论文标题
二进制恒星系统中行星的共振捕获和长期演变
Resonance capture and long-term evolution of planets in binary star systems
论文作者
论文摘要
这项工作的目的是研究II型迁移阶段中二元伴侣对两行星系统的演变的影响,及其在原球磁盘消散后的长期演变。我们使用Symblectic Integrator Symba,被修改为包括宽二进制伴侣。我们还包括在磁盘阶段的巨型行星的型II迁移,具有适当的偏心率和倾斜度阻尼以及作用于行星上的磁盘引力电位以及由二元伴侣引起的磁盘的节点进动。我们考虑二元同伴的各种倾向,偏心率和分离。尽管存在二进制伴侣,但磁盘迁移允许在平均动作共振(MMR)中形成行星对。当二元分离宽(1000AU)时,它在行星上升高的扰动的时间尺度比磁盘的寿命更长,并在2:1、5:2和3:1 mmr中常规形成谐振对。只要行星 - 行星的相互作用时间尺度小于二元扰动时间尺度,则这些系统可以在磁盘消散后很长时间保持共振。当二元分离较小(250AU)时,只有2:1的共振中的行星往往会保持在共振状态,并且观察到更多混乱的演变以及更多的弹出。弹出后,由于二进制伴侣的扰动,其余的行星可能会变得偏心,并且可以在von Ziepel-lidov-kozai的强烈倾斜的二元同伴中捕获共振,而在具有两个行星的系统中,这种机制被行星式植物相互作用淬灭。我们的模拟表明,行星 - 盘,行星环和行星二进制相互作用之间的相互作用会导致形成的谐振对,这些行星对在时间刻度中保持稳定的时间比磁盘的寿命更长。
The aim of this work is to study the impact of a binary companion on the evolution of two-planet systems during both the type-II migration phase and their long-term evolution after the dissipation of the protoplanetary disk. We use the symplectic integrator SyMBA, modified to include a wide binary companion. We also include the Type-II migration of giant planets during the disk phase with suitable eccentricity and inclination damping as well as the disk gravitational potential acting on the planets and the nodal precession of the disk induced by the binary companion. We consider various inclinations, eccentricities, and separations of the binary companion. Disk migration allows the formation of planet pairs in mean-motion resonances (MMR) despite the presence of the binary companion. When the binary separation is wide (1000au), the timescale of the perturbations it raises on the planets is longer than the disk's lifetime and resonant pairs are routinely formed in the 2:1, 5:2 and 3:1 MMR. Provided the planet-planet interaction timescale is smaller than the binary perturbations timescale, these systems can remain in resonance long after the disk has dissipated. When the binary separation is smaller (250au), only planets in the 2:1 resonance tend to remain in a resonant state and more chaotic evolutions are observed, as well as more ejections. After those ejections, the remaining planet can become eccentric due to the perturbations from the binary companion and for strongly inclined binary companions captures in the von Ziepel-Lidov-Kozai resonance can occur, while in systems with two planets this mechanism is quenched by planet-planet interactions. Our simulations reveal that the interplay between planet-disk, planet-planet and planet-binary interactions can lead to the formation of resonant pairs of planets which remain stable over timescales much longer than the disk's lifetime.