论文标题
FD-CAM:改善CNN视觉解释的忠诚和可区分性
FD-CAM: Improving Faithfulness and Discriminability of Visual Explanation for CNNs
论文作者
论文摘要
类激活图(CAM)已被广泛研究,用于视觉解释卷积神经网络的内部工作机理。现有基于CAM的方法的关键是计算有效的权重以在目标卷积层中结合激活图。现有的基于梯度和得分的加权方案在确保CAM的可区分性或忠诚方面表现出了优越性,但它们通常在这两种属性中都无法表现出色。在本文中,我们提出了一种名为FD-CAM的新型CAM加权方案,以提高基于CAM的CNN视觉解释的忠诚和可区分性。首先,我们通过执行分组的通道切换操作来提高基于分数的权重的忠诚和可区分性。具体而言,对于每个通道,我们计算其相似性组,并同时开或关闭一组通道,以计算类预测评分的变化作为权重。然后,我们将改进的基于得分的权重与常规梯度的权重相结合,以便可以进一步提高最终CAM的可区分性。我们与最先进的CAM算法进行了广泛的比较。定量和定性结果表明,我们的FD-CAM可以对CNN产生更忠实,更具歧视性的视觉解释。我们还进行实验,以验证提出的分组通道切换和重量组合方案在改善结果方面的有效性。我们的代码可从https://github.com/crishhhh1998/fd-cam获得。
Class activation map (CAM) has been widely studied for visual explanation of the internal working mechanism of convolutional neural networks. The key of existing CAM-based methods is to compute effective weights to combine activation maps in the target convolution layer. Existing gradient and score based weighting schemes have shown superiority in ensuring either the discriminability or faithfulness of the CAM, but they normally cannot excel in both properties. In this paper, we propose a novel CAM weighting scheme, named FD-CAM, to improve both the faithfulness and discriminability of the CAM-based CNN visual explanation. First, we improve the faithfulness and discriminability of the score-based weights by performing a grouped channel switching operation. Specifically, for each channel, we compute its similarity group and switch the group of channels on or off simultaneously to compute changes in the class prediction score as the weights. Then, we combine the improved score-based weights with the conventional gradient-based weights so that the discriminability of the final CAM can be further improved. We perform extensive comparisons with the state-of-the-art CAM algorithms. The quantitative and qualitative results show our FD-CAM can produce more faithful and more discriminative visual explanations of the CNNs. We also conduct experiments to verify the effectiveness of the proposed grouped channel switching and weight combination scheme on improving the results. Our code is available at https://github.com/crishhh1998/FD-CAM.