论文标题

在大环境中为自动机器人的高效WiFi激光元大满贯

Efficient WiFi LiDAR SLAM for Autonomous Robots in Large Environments

论文作者

Ismail, Khairuldanial, Liu, Ran, Qin, Zhenghong, Athukorala, Achala, Lau, Billy Pik Lik, Shalihan, Muhammad, Yuen, Chau, Tan, U-Xuan

论文摘要

在室内运行的自主机器人和GPS拒绝的环境可以使用LIDAR进行大满贯。但是,由于循环闭合检测和计算负载以执行扫描匹配的挑战,在几何衰减的环境中表现不佳。现有的WiFi基础架构可以用低硬件和计算成本来进行本地化和映射。但是,使用WiFi进行准确的姿势估计是具有挑战性的,因为由于信号传播的不可预测性,可以在同一位置测量不同的信号值。因此,我们介绍了WiFi指纹序列的使用,以在SLAM中进行姿势估计(即循环闭合)。这种方法利用移动机器人移动时获得的位置指纹的空间相干性。这具有更高的校正探射时间漂移的能力。该方法还结合了激光扫描,从而提高了大型和几何衰减环境的计算效率,同时保持LiDAR SLAM的准确性。我们在室内环境中进行了实验,以说明该方法的有效性。基于根平方误差(RMSE)评估结果,并在测试环境中达到了88m的精度。

Autonomous robots operating in indoor and GPS denied environments can use LiDAR for SLAM instead. However, LiDARs do not perform well in geometrically-degraded environments, due to the challenge of loop closure detection and computational load to perform scan matching. Existing WiFi infrastructure can be exploited for localization and mapping with low hardware and computational cost. Yet, accurate pose estimation using WiFi is challenging as different signal values can be measured at the same location due to the unpredictability of signal propagation. Therefore, we introduce the use of WiFi fingerprint sequence for pose estimation (i.e. loop closure) in SLAM. This approach exploits the spatial coherence of location fingerprints obtained while a mobile robot is moving. This has better capability of correcting odometry drift. The method also incorporates LiDAR scans and thus, improving computational efficiency for large and geometrically-degraded environments while maintaining the accuracy of LiDAR SLAM. We conducted experiments in an indoor environment to illustrate the effectiveness of the method. The results are evaluated based on Root Mean Square Error (RMSE) and it has achieved an accuracy of 0.88m for the test environment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源