论文标题

马尔可夫链中的迭代重要性抽样在稳健的贝叶斯分析中

Iterative importance sampling with Markov chain Monte Carlo sampling in robust Bayesian analysis

论文作者

Cruz, Ivette Raices, Lindström, Johan, Troffaes, Matthias C. M., Sahlin, Ullrika

论文摘要

贝叶斯在一组先验下的推断,称为稳健的贝叶斯分析,允许在模型中估算参数,并通过有限(或不精确的)概率来量化利益量的认知不确定性。迭代重要性采样可用于通过优化对先验的集合来估计利息量的界限。当提出了稳健的贝叶斯推断依赖于马尔可夫链蒙特卡洛(MCMC)采样时,一种迭代重要性采样的方法。为了适应迭代重要性采样中的MCMC采样,得出了重要性采样的有效样本大小的新表达式,该表达式是MCMC样本中相关性的。为了说明提出的可靠贝叶斯分析的方法,使用MCMC采样的迭代重要性采样用于估计先前发表的荟萃分析和随机效应模型的总体效应的下限。还探讨了该方法的性能与网格搜索方法以及在不同程度的先验数据冲突中相比。

Bayesian inference under a set of priors, called robust Bayesian analysis, allows for estimation of parameters within a model and quantification of epistemic uncertainty in quantities of interest by bounded (or imprecise) probability. Iterative importance sampling can be used to estimate bounds on the quantity of interest by optimizing over the set of priors. A method for iterative importance sampling when the robust Bayesian inference rely on Markov chain Monte Carlo (MCMC) sampling is proposed. To accommodate the MCMC sampling in iterative importance sampling, a new expression for the effective sample size of the importance sampling is derived, which accounts for the correlation in the MCMC samples. To illustrate the proposed method for robust Bayesian analysis, iterative importance sampling with MCMC sampling is applied to estimate the lower bound of the overall effect in a previously published meta-analysis with a random effects model. The performance of the method compared to a grid search method and under different degrees of prior-data conflict is also explored.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源