论文标题

感官竞争预测大型小鼠初级视觉皮层活性

The Sensorium competition on predicting large-scale mouse primary visual cortex activity

论文作者

Willeke, Konstantin F., Fahey, Paul G., Bashiri, Mohammad, Pede, Laura, Burg, Max F., Blessing, Christoph, Cadena, Santiago A., Ding, Zhiwei, Lurz, Konstantin-Klemens, Ponder, Kayla, Muhammad, Taliah, Patel, Saumil S., Ecker, Alexander S., Tolias, Andreas S., Sinz, Fabian H.

论文摘要

生物视觉系统的神经基础是实验研究的挑战,特别是因为相对于视觉输入,神经元活性变得越来越非线性。人工神经网络(ANN)可以为我们的理解提供各种目标,不仅是用于硅硅中新型假设产生的感觉皮层的预测数字双胞胎,而且还融合了生物启发的建筑主题,可以逐步弥合生物学和机器视觉之间的差距。该鼠标最近已成为研究视觉信息处理的流行模型系统,但是尚未确定识别鼠标视觉系统最新模型的标准化大规模基准。为了填补这一空白,我们提出了感官基准竞赛。我们从小鼠初级视觉皮层中收集了一个大规模数据集,其中包含七个小鼠的28,000多个神经元的响应,这些小鼠被数千个自然图像刺激,以及同时的行为测量,包括跑步速度,瞳孔扩张和眼球运动。基准挑战将根据持有测试集中神经元反应的预测性能进行基于模型的模型,其中包括两个模型输入的轨道,仅限于刺激(感觉到)或刺激加行为(感觉群+)。我们提供一个起始套件,以降低进入障碍的障碍,包括教程,预先训练的基线模型以及带有一条线命令以进行数据加载和提交的API。我们希望将其视为定期挑战和数据发布的起点,也是衡量鼠标视觉系统及其他大规模神经系统识别模型中进度的标准工具。

The neural underpinning of the biological visual system is challenging to study experimentally, in particular as the neuronal activity becomes increasingly nonlinear with respect to visual input. Artificial neural networks (ANNs) can serve a variety of goals for improving our understanding of this complex system, not only serving as predictive digital twins of sensory cortex for novel hypothesis generation in silico, but also incorporating bio-inspired architectural motifs to progressively bridge the gap between biological and machine vision. The mouse has recently emerged as a popular model system to study visual information processing, but no standardized large-scale benchmark to identify state-of-the-art models of the mouse visual system has been established. To fill this gap, we propose the Sensorium benchmark competition. We collected a large-scale dataset from mouse primary visual cortex containing the responses of more than 28,000 neurons across seven mice stimulated with thousands of natural images, together with simultaneous behavioral measurements that include running speed, pupil dilation, and eye movements. The benchmark challenge will rank models based on predictive performance for neuronal responses on a held-out test set, and includes two tracks for model input limited to either stimulus only (Sensorium) or stimulus plus behavior (Sensorium+). We provide a starting kit to lower the barrier for entry, including tutorials, pre-trained baseline models, and APIs with one line commands for data loading and submission. We would like to see this as a starting point for regular challenges and data releases, and as a standard tool for measuring progress in large-scale neural system identification models of the mouse visual system and beyond.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源