论文标题
您如何开始对概括很重要
How You Start Matters for Generalization
论文作者
论文摘要
表征过度参数化神经网络的显着概括性能仍然是一个开放的问题。在本文中,我们将重点转向初始化而不是神经结构或(随机)梯度下降,以解释这种隐式正则化。通过傅立叶镜头,我们得出了神经网络光谱偏置的一般结果,并表明神经网络的概括与它们的初始化密切相关。此外,我们使用实用的深层网络在经验上巩固了开发的理论见解。最后,我们反对有争议的平米尼猜想,并表明傅立叶分析为理解神经网络的概括提供了更可靠的框架。
Characterizing the remarkable generalization properties of over-parameterized neural networks remains an open problem. In this paper, we promote a shift of focus towards initialization rather than neural architecture or (stochastic) gradient descent to explain this implicit regularization. Through a Fourier lens, we derive a general result for the spectral bias of neural networks and show that the generalization of neural networks is heavily tied to their initialization. Further, we empirically solidify the developed theoretical insights using practical, deep networks. Finally, we make a case against the controversial flat-minima conjecture and show that Fourier analysis grants a more reliable framework for understanding the generalization of neural networks.