论文标题
仿真模型的时空神经网络预测方法
A Spatio-Temporal Neural Network Forecasting Approach for Emulation of Firefront Models
论文作者
论文摘要
野火蔓延的计算模拟通常在各种条件下(例如地形,燃料类型,天气)采用经验分布计算。条件下的小扰动通常会导致火灾蔓延的显着变化(例如速度和方向),因此需要进行计算上昂贵的大型模拟以量化不确定性。模型仿真寻求使用机器学习的物理模型的替代表示,旨在提供更有效和/或简化的替代模型。我们提出了一个专门的基于时空神经网络的框架,用于模型仿真,能够捕获火灾传播模型的复杂行为。所提出的方法可以在基于神经网络的方法通常具有挑战性的空间和时间分辨率上进行近似预测。此外,由于新的数据增强方法,即使使用小型训练组,提出的方法也是强大的。经验实验表明,模拟和模拟的火山之间的良好一致性,平均jaccard得分为0.76。
Computational simulations of wildfire spread typically employ empirical rate-of-spread calculations under various conditions (such as terrain, fuel type, weather). Small perturbations in conditions can often lead to significant changes in fire spread (such as speed and direction), necessitating a computationally expensive large set of simulations to quantify uncertainty. Model emulation seeks alternative representations of physical models using machine learning, aiming to provide more efficient and/or simplified surrogate models. We propose a dedicated spatio-temporal neural network based framework for model emulation, able to capture the complex behaviour of fire spread models. The proposed approach can approximate forecasts at fine spatial and temporal resolutions that are often challenging for neural network based approaches. Furthermore, the proposed approach is robust even with small training sets, due to novel data augmentation methods. Empirical experiments show good agreement between simulated and emulated firefronts, with an average Jaccard score of 0.76.