论文标题

TLETA:深度转移学习和综合细胞知识,以估计到达预测时间

TLETA: Deep Transfer Learning and Integrated Cellular Knowledge for Estimated Time of Arrival Prediction

论文作者

Tran, Hieu, Nguyen, Son, Yen, I-Ling, Bastani, Farokh

论文摘要

车辆到达时间预测已被广泛研究。随着物联网设备和深度学习技术的出现,估计的到达时间(ETA)已成为智能运输系统中的关键组成部分。尽管ETA存在许多工具,但由于特殊车辆的交通数据有限,ETA的特殊车辆(例如救护车,消防车等)仍然具有挑战性。现有工程使用一种模型用于所有类型的车辆,这可能会导致精确度较低。为了解决这个问题,作为该领域的第一个,我们为驾驶时间预测提出了一个深度转移学习框架Tleta。 TLETA构建了用于提取驾驶模式的细胞时空知识网格,并结合了嵌入的道路网络结构,以构建ETA的深神经网络。 Tleta包含可转移的层,以支持不同类别的车辆之间的知识转移。重要的是,我们的转移模型仅训练最后一层以绘制转移的知识,从而大大减少了训练时间。实验研究表明,我们的模型以高精度预测旅行时间,并胜过许多最先进的方法。

Vehicle arrival time prediction has been studied widely. With the emergence of IoT devices and deep learning techniques, estimated time of arrival (ETA) has become a critical component in intelligent transportation systems. Though many tools exist for ETA, ETA for special vehicles, such as ambulances, fire engines, etc., is still challenging due to the limited amount of traffic data for special vehicles. Existing works use one model for all types of vehicles, which can lead to low accuracy. To tackle this, as the first in the field, we propose a deep transfer learning framework TLETA for the driving time prediction. TLETA constructs cellular spatial-temporal knowledge grids for extracting driving patterns, combined with the road network structure embedding to build a deep neural network for ETA. TLETA contains transferable layers to support knowledge transfer between different categories of vehicles. Importantly, our transfer models only train the last layers to map the transferred knowledge, that reduces the training time significantly. The experimental studies show that our model predicts travel time with high accuracy and outperforms many state-of-the-art approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源