论文标题
用预算模型的零拍动汽车
Zero-Shot AutoML with Pretrained Models
论文作者
论文摘要
鉴于新的数据集D和低计算预算,我们应该如何选择预培训的模型来微调D,并设置微调的超参数而不冒险过度拟合,尤其是如果D小?在这里,我们扩展了自动化的机器学习(AUTOML),以最好地做出这些选择。我们与域无关的元学习方法学习了一个零射击的替代模型,在测试时,该模型允许选择正确的深度学习(DL)管道(包括预先训练的模型和新数据集体的微型模型和微调的超参数)D给出了仅给出的琐碎的元竞争,例如描述图像分辨率或类别的次数。为了训练这种零射模型,我们在大量数据集中收集了许多DL管道的性能数据,并在此数据上收集了元训练,以最大程度地减少成对排名目标。我们在Chalearn AutoDL挑战基准的视觉轨道的严格时间限制下评估我们的方法,显然超过了所有挑战竞争者。
Given a new dataset D and a low compute budget, how should we choose a pre-trained model to fine-tune to D, and set the fine-tuning hyperparameters without risking overfitting, particularly if D is small? Here, we extend automated machine learning (AutoML) to best make these choices. Our domain-independent meta-learning approach learns a zero-shot surrogate model which, at test time, allows to select the right deep learning (DL) pipeline (including the pre-trained model and fine-tuning hyperparameters) for a new dataset D given only trivial meta-features describing D such as image resolution or the number of classes. To train this zero-shot model, we collect performance data for many DL pipelines on a large collection of datasets and meta-train on this data to minimize a pairwise ranking objective. We evaluate our approach under the strict time limit of the vision track of the ChaLearn AutoDL challenge benchmark, clearly outperforming all challenge contenders.