论文标题

在低红移中排除新物理学作为解决$ H_0 $张力的解决方案

Ruling Out New Physics at Low Redshift as a solution to the $H_0$ Tension

论文作者

Keeley, Ryan E., Shafieloo, Arman

论文摘要

我们证明没有$ H_0 $张力的低频解决方案。为了牢固地回答这个问题,我们对状态的暗能量方程式使用非常灵活的参数化,使得在此先前卷内仍然存在数据允许的每个宇宙距离。然后回答在此综合参数化中是否存在$ H_0 $张力的令人满意的解决方案,我们使用普朗克宇宙微波背景,SDSS-IV/EBOSS DR16 BARYON OACOSOSTIC OSCILLATION和PANTHEON SUPERNATHEON SUPERNOVA DATASETS来限制了参数形式。仅受宇宙微波背景数据集的限制时,存在一组状态方程,该方程得出高$ H_0 $值,但是这些状态方程式被超新星和Baryon声学振荡数据集的组合所排除。换句话说,从宇宙微波背景,重子声学振荡和超新星数据集中的约束不允许高$ h_0 $值,并在与宇宙常数一致的状态方程周围收敛。因此,由于这种非常灵活的参数化不能为$ H_0 $张力提供解决方案,因此无法解决$ H_0 $张力的解决方案,该张力仅在低红移时添加物理。这与宇宙及其几何属性的扩展历史直接相关,并将包括$ w(z)$参数的模型。

We make the case that there can be no low-redshift solution to the $H_0$ tension. To robustly answer this question, we use a very flexible parameterization for the dark energy equation of state such that every cosmological distance still allowed by data exists within this prior volume. To then answer whether there exists a satisfactory solution to the $H_0$ tension within this comprehensive parameterization, we constrained the parametric form using different partitions of the Planck cosmic microwave background, SDSS-IV/eBOSS DR16 baryon acoustic oscillation, and Pantheon supernova datasets. When constrained by just the cosmic microwave background dataset, there exists a set of equations of state which yields high $H_0$ values, but these equations of state are ruled out by the combination of the supernova and baryon acoustic oscillation datasets. In other words, the constraint from the cosmic microwave background, baryon acoustic oscillation, and supernova datasets together does not allow for high $H_0$ values and converges around an equation of state consistent with a cosmological constant. Thus, since this very flexible parameterization does not offer a solution to the $H_0$ tension, there can be no solution to the $H_0$ tension that adds physics at only low redshifts. This is directly related to the expansion history of the Universe and its geometrical properties and would include models beyond those parametrized by $w(z)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源