论文标题
普遍的贝叶斯推断,用于离散可怜的可能性
Generalised Bayesian Inference for Discrete Intractable Likelihood
论文作者
论文摘要
离散状态空间代表了对统计推断的主要计算挑战,因为归一化常数的计算需要对大型或可能的无限集合进行求和,这可能是不切实际的。本文通过开发一种适合离散可怜的可能性的新型贝叶斯推理程序来解决这一计算挑战。受到连续数据的最新方法学进步的启发,主要思想是使用离散的Fisher Divergence更新有关模型参数的信念,以代替有问题的棘手的可能性。结果是可以从使用标准计算工具(例如马尔可夫链蒙特卡洛)来从使用标准的计算工具中取样的广义后部。分析了广义后验的统计特性,并具有足够的后验一致性和渐近正态性的条件。此外,提出了一种新颖的通用后代校准方法。应用程序在晶格模型上介绍了离散空间数据和计数数据的多元模型上的应用程序,在这种情况下,在每种情况下,方法论都以低计算成本促进了概括的贝叶斯推断。
Discrete state spaces represent a major computational challenge to statistical inference, since the computation of normalisation constants requires summation over large or possibly infinite sets, which can be impractical. This paper addresses this computational challenge through the development of a novel generalised Bayesian inference procedure suitable for discrete intractable likelihood. Inspired by recent methodological advances for continuous data, the main idea is to update beliefs about model parameters using a discrete Fisher divergence, in lieu of the problematic intractable likelihood. The result is a generalised posterior that can be sampled from using standard computational tools, such as Markov chain Monte Carlo, circumventing the intractable normalising constant. The statistical properties of the generalised posterior are analysed, with sufficient conditions for posterior consistency and asymptotic normality established. In addition, a novel and general approach to calibration of generalised posteriors is proposed. Applications are presented on lattice models for discrete spatial data and on multivariate models for count data, where in each case the methodology facilitates generalised Bayesian inference at low computational cost.