论文标题
基于几何事件的相对论量子力学
Geometric Event-Based Relativistic Quantum Mechanics
论文作者
论文摘要
我们为量子力学提出了一个特殊的相对论框架。它基于引入希尔伯特空间进行活动。事件被视为原始概念(习惯性相对论),而量子系统(例如磁场和颗粒)以关节概率幅度的形式出现,以实现事件的位置和时间。教科书相对论量子力学和量子场理论可以通过将事件希尔伯特空间分为空间和时间(叶子),然后将事件状态调节到时间部分来恢复。我们的理论满足了完全的庞加利“对称性”作为“几何”统一转换,并具有可观察到的空间(事件的位置)和时间(事件时间的位置)。
We propose a special relativistic framework for quantum mechanics. It is based on introducing a Hilbert space for events. Events are taken as primitive notions (as customary in relativity), whereas quantum systems (e.g. fields and particles) are emergent in the form of joint probability amplitudes for position and time of events. Textbook relativistic quantum mechanics and quantum field theory can be recovered by dividing the event Hilbert spaces into space and time (a foliation) and then conditioning the event states onto the time part. Our theory satisfies the full Poincare' symmetry as a `geometric' unitary transformation, and possesses observables for space (location of an event) and time (position in time of an event).