论文标题
部分可观测时空混沌系统的无模型预测
Strongly Goldilocks Domains, quantitative Visibility, and Applications
论文作者
论文摘要
在过去的十年中,G。Bharali和A. Zimmer定义了一类称为Goldilocks域的域,它们表明,这种域满足了相对于Kobayashi极端曲线的可见性条件。受其构造的启发,我们定义了一个称为Goldilocks域的Goldilocks域的子类,我们证明了对Goldilocks域的定量可见性结果。利用我们的定量可见性结果,我们将gehring-hayman定理扩展到简单地连接的平面域上,以强烈的Goldilocks域。作为我们建筑的应用,我们还对Kobayashi距离进行了较低的估计。
In the last decade, G. Bharali and A. Zimmer defined a class of domains called Goldilocks domains and they showed that such a domain satisfies a visibility condition with respect to the Kobayashi extremal curves. Inspired by their construction, we define a subclass of Goldilocks domains called strongly Goldilocks domains and we prove a quantitative visibility result on strongly Goldilocks domains. Using our quantitative visibility result, we extend the Gehring-Hayman theorem on simply connected planar domains to strongly Goldilocks domains. As an application of our construction, we also give lower estimates to the Kobayashi distance.