论文标题

注意力蒙面的图形对比度学习用于预测分子特性

Attention-wise masked graph contrastive learning for predicting molecular property

论文作者

Liu, Hui, Huang, Yibiao, Liu, Xuejun, Deng, Lei

论文摘要

准确有效地预测药物的分子特性是药物研发中的基本问题之一。表明学习的最新进展已被证明可以大大提高分子财产预测的性能。但是,由于标记有限的数据,基于学习的基于学习的分子表示算法只能搜索有限的化学空间,从而导致概括性差。在这项工作中,我们为大规模未标记分子提出了一个自制的表示框架。我们制定了一种新型的分子图扩展策略,称为注意图形掩码,以生成具有挑战性的阳性样品以进行对比度学习。我们将图形注意力网络(GAT)作为分子图编码器,并利用学习的注意力评分作为掩盖指导来生成分子增强图。通过最小化原始图和蒙版图之间的对比损失,我们的模型可以捕获重要的分子结构和高阶语义信息。广泛的实验表明,我们注意力图形蒙版对比度学习在几个下游分子属性预测任务中表现出最先进的表现。

Accurate and efficient prediction of the molecular properties of drugs is one of the fundamental problems in drug research and development. Recent advancements in representation learning have been shown to greatly improve the performance of molecular property prediction. However, due to limited labeled data, supervised learning-based molecular representation algorithms can only search limited chemical space, which results in poor generalizability. In this work, we proposed a self-supervised representation learning framework for large-scale unlabeled molecules. We developed a novel molecular graph augmentation strategy, referred to as attention-wise graph mask, to generate challenging positive sample for contrastive learning. We adopted the graph attention network (GAT) as the molecular graph encoder, and leveraged the learned attention scores as masking guidance to generate molecular augmentation graphs. By minimization of the contrastive loss between original graph and masked graph, our model can capture important molecular structure and higher-order semantic information. Extensive experiments showed that our attention-wise graph mask contrastive learning exhibit state-of-the-art performance in a couple of downstream molecular property prediction tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源