论文标题
K-radar:在各种天气条件下自动驾驶的4D雷达对象检测
K-Radar: 4D Radar Object Detection for Autonomous Driving in Various Weather Conditions
论文作者
论文摘要
与使用可见光带(384美元$ \ sim $ 769 THz)和使用红外频带(361 $ \ sim $ 331 THz)的RGB摄像机不同,雷达使用相对较长的波长无线电桶(77美元$ \ sim $ 81 GHz),从而实现了强大的体重测量。不幸的是,与现有相机和LIDAR数据集相比,现有的雷达数据集仅包含相对少量的样品。这可能会阻碍基于雷达的感知的复杂数据驱动的深度学习技术的发展。此外,大多数现有的雷达数据集仅提供3D雷达张量(3DRT)数据,该数据包含沿多普勒,范围和方位角尺寸的功率测量值。由于没有高程信息,要估算来自3DRT的对象的3D边界框是一个挑战。 In this work, we introduce KAIST-Radar (K-Radar), a novel large-scale object detection dataset and benchmark that contains 35K frames of 4D Radar tensor (4DRT) data with power measurements along the Doppler, range, azimuth, and elevation dimensions, together with carefully annotated 3D bounding box labels of objects on the roads. K-Radar包括在各种道路结构(城市,郊区道路,小巷和高速公路)上进行挑战的驾驶条件,例如不良风雨(雾,雨和雪)。除4DRT外,我们还提供了仔细校准的高分辨率激光痛,周围的立体声摄像头和RTK-GPS的辅助测量值。我们还提供基于4DRT的对象检测基线神经网络(基线NN),并表明高度信息对于3D对象检测至关重要。通过将基线NN与类似结构的激光雷达神经网络进行比较,我们证明了4D雷达是不利天气条件的更强大的传感器。所有代码均可在https://github.com/kaist-avelab/k-radar上找到。
Unlike RGB cameras that use visible light bands (384$\sim$769 THz) and Lidars that use infrared bands (361$\sim$331 THz), Radars use relatively longer wavelength radio bands (77$\sim$81 GHz), resulting in robust measurements in adverse weathers. Unfortunately, existing Radar datasets only contain a relatively small number of samples compared to the existing camera and Lidar datasets. This may hinder the development of sophisticated data-driven deep learning techniques for Radar-based perception. Moreover, most of the existing Radar datasets only provide 3D Radar tensor (3DRT) data that contain power measurements along the Doppler, range, and azimuth dimensions. As there is no elevation information, it is challenging to estimate the 3D bounding box of an object from 3DRT. In this work, we introduce KAIST-Radar (K-Radar), a novel large-scale object detection dataset and benchmark that contains 35K frames of 4D Radar tensor (4DRT) data with power measurements along the Doppler, range, azimuth, and elevation dimensions, together with carefully annotated 3D bounding box labels of objects on the roads. K-Radar includes challenging driving conditions such as adverse weathers (fog, rain, and snow) on various road structures (urban, suburban roads, alleyways, and highways). In addition to the 4DRT, we provide auxiliary measurements from carefully calibrated high-resolution Lidars, surround stereo cameras, and RTK-GPS. We also provide 4DRT-based object detection baseline neural networks (baseline NNs) and show that the height information is crucial for 3D object detection. And by comparing the baseline NN with a similarly-structured Lidar-based neural network, we demonstrate that 4D Radar is a more robust sensor for adverse weather conditions. All codes are available at https://github.com/kaist-avelab/k-radar.