论文标题

强化学习增强的共享元跨域顺序建议

Reinforcement Learning-enhanced Shared-account Cross-domain Sequential Recommendation

论文作者

Guo, Lei, Zhang, Jinyu, Chen, Tong, Wang, Xinhua, Yin, Hongzhi

论文摘要

共享符合跨域顺序推荐(SCSR)是一项新兴而又具有挑战性的任务,在顺序建议中同时考虑共享符号和跨域特征。 SCSR上的现有作品主要基于复发性神经网络(RNN)和图神经网络(GNN),但他们忽略了一个事实,尽管多个用户共享一个帐户,但一次主要由一个用户占用。这一观察结果促使我们通过专注于其最近的行为来学习更准确的用户特定帐户表示。此外,尽管现有的作品降低了与相互作用无关的互动,但它们仍可能稀释域信息并阻碍跨域建议。为了解决上述问题,我们提出了一种基于增强学习的解决方案,即RL-ISN,该解决方案由基本的跨域推荐和基于增强的学习域滤波器组成。具体而言,要在共享账户方案中对帐户表示形式进行建模,基本推荐人首先将用户作为潜在用户的混合行为混合行为,然后利用注意力模型在上面进行用户身份识别。为了减少无关域信息的影响,我们将域滤波器作为层次强化学习任务制定,其中利用高级任务来决定是否修改整个转移的序列,如果执行该任务,那么是否可以进一步执行低级任务,以确定是否在其内部进行了每种交互。为了评估解决方案的性能,我们对两个现实世界数据集进行了广泛的实验,并且实验结果证明了与最先进的建议方法相比,我们的RL-ISN方法的优越性。

Shared-account Cross-domain Sequential Recommendation (SCSR) is an emerging yet challenging task that simultaneously considers the shared-account and cross-domain characteristics in the sequential recommendation. Existing works on SCSR are mainly based on Recurrent Neural Network (RNN) and Graph Neural Network (GNN) but they ignore the fact that although multiple users share a single account, it is mainly occupied by one user at a time. This observation motivates us to learn a more accurate user-specific account representation by attentively focusing on its recent behaviors. Furthermore, though existing works endow lower weights to irrelevant interactions, they may still dilute the domain information and impede the cross-domain recommendation. To address the above issues, we propose a reinforcement learning-based solution, namely RL-ISN, which consists of a basic cross-domain recommender and a reinforcement learning-based domain filter. Specifically, to model the account representation in the shared-account scenario, the basic recommender first clusters users' mixed behaviors as latent users, and then leverages an attention model over them to conduct user identification. To reduce the impact of irrelevant domain information, we formulate the domain filter as a hierarchical reinforcement learning task, where a high-level task is utilized to decide whether to revise the whole transferred sequence or not, and if it does, a low-level task is further performed to determine whether to remove each interaction within it or not. To evaluate the performance of our solution, we conduct extensive experiments on two real-world datasets, and the experimental results demonstrate the superiority of our RL-ISN method compared with the state-of-the-art recommendation methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源