论文标题
基于数据驱动抽象的控制合成
Data-Driven Abstraction-Based Control Synthesis
论文作者
论文摘要
本文研究了具有未知动力学的连续空间系统控制器的形式合成,以满足表示为线性时间逻辑公式的要求。基于正式的抽象的合成方案依赖于系统的精确数学模型来构建有限的抽象模型,然后将其用于设计控制器。当系统的动力学未知时,基于抽象的方案不适用。我们提出了一种数据驱动的方法,该方法使用有限数量的轨迹来计算系统的增长界限。然后使用与采样轨迹结合的生长来构建抽象并合成控制器。 我们的方法将增长的计算作为强大的凸优化程序(RCP)。由于未知动力学出现在优化中,因此我们使用有限数量的采样轨迹制定了与RCP相对应的方案凸面程序(SCP)。我们建立了样本复杂性结果,该结果为采样轨迹的数量提供了下限,以确保以给定的置信度从SCP计算出的生长的正确性。我们还提供了一个样本复杂性结果,以使系统在闭环中满足系统的满足,并具有设计的控制器以获得给定的置信度。我们的结果建立在估计系统的Lipchitz常数上的结合,并保证满足有限和无限 - 摩恩的规格。我们表明,通过修改生长结合的配方并提供相似的样品复杂性结果,我们的数据驱动方法可以轻松地用作无模型的抽象精炼方案。在三个案例研究中显示了我们方法的表现。
This paper studies formal synthesis of controllers for continuous-space systems with unknown dynamics to satisfy requirements expressed as linear temporal logic formulas. Formal abstraction-based synthesis schemes rely on a precise mathematical model of the system to build a finite abstract model, which is then used to design a controller. The abstraction-based schemes are not applicable when the dynamics of the system are unknown. We propose a data-driven approach that computes the growth bound of the system using a finite number of trajectories. The growth bound together with the sampled trajectories are then used to construct the abstraction and synthesise a controller. Our approach casts the computation of the growth bound as a robust convex optimisation program (RCP). Since the unknown dynamics appear in the optimisation, we formulate a scenario convex program (SCP) corresponding to the RCP using a finite number of sampled trajectories. We establish a sample complexity result that gives a lower bound for the number of sampled trajectories to guarantee the correctness of the growth bound computed from the SCP with a given confidence. We also provide a sample complexity result for the satisfaction of the specification on the system in closed loop with the designed controller for a given confidence. Our results are founded on estimating a bound on the Lipschitz constant of the system and provide guarantees on satisfaction of both finite and infinite-horizon specifications. We show that our data-driven approach can be readily used as a model-free abstraction refinement scheme by modifying the formulation of the growth bound and providing similar sample complexity results. The performance of our approach is shown on three case studies.