论文标题
时间间隔增强图形神经网络,用于共享元跨域顺序推荐
Time Interval-enhanced Graph Neural Network for Shared-account Cross-domain Sequential Recommendation
论文作者
论文摘要
共享符号跨域顺序推荐(SCSR)任务旨在通过利用多个域中的混合用户行为推荐下一个项目。随着越来越多的用户倾向于在不同的平台上注册并与其他人共享访问域特定的服务,它正在引起极大的研究关注。现有关于SCSR的作品主要依赖于基于复发的神经网络(RNN)模型的采矿顺序模式,该模型受到以下局限性:1)基于RNN的方法,基于RNN的方法却以压倒性的目标是发现单用户行为中的顺序依赖性。它们的表现不足以捕获SCSR中多个实体之间的关系。 2)所有现有方法通过潜在空间中的知识转移桥接两个域,并忽略显式的跨域图结构。 3)没有现有的研究考虑项目之间的时间间隔信息,这对于表征不同项目和学习歧视性表示的顺序建议至关重要。在这项工作中,我们提出了一种新的基于图的解决方案,即TIDA-GCN,以应对上述挑战。具体来说,我们首先将每个域中的用户和项目链接为图。然后,我们设计了一个域感知图形卷积网络来学习用户特异性节点表示。为了充分说明用户对项目的域特异性偏好,进一步开发了两个有效的注意机制,以选择性地指导消息传递过程。此外,为了进一步增强项目和帐户级的表示学习,我们将时间间隔纳入消息传递中,并为学习项目的交互式特征设计一个意识到的帐户自我发项模块。实验证明了我们提出的方法从各个方面的优越性。
Shared-account Cross-domain Sequential Recommendation (SCSR) task aims to recommend the next item via leveraging the mixed user behaviors in multiple domains. It is gaining immense research attention as more and more users tend to sign up on different platforms and share accounts with others to access domain-specific services. Existing works on SCSR mainly rely on mining sequential patterns via Recurrent Neural Network (RNN)-based models, which suffer from the following limitations: 1) RNN-based methods overwhelmingly target discovering sequential dependencies in single-user behaviors. They are not expressive enough to capture the relationships among multiple entities in SCSR. 2) All existing methods bridge two domains via knowledge transfer in the latent space, and ignore the explicit cross-domain graph structure. 3) None existing studies consider the time interval information among items, which is essential in the sequential recommendation for characterizing different items and learning discriminative representations for them. In this work, we propose a new graph-based solution, namely TiDA-GCN, to address the above challenges. Specifically, we first link users and items in each domain as a graph. Then, we devise a domain-aware graph convolution network to learn userspecific node representations. To fully account for users' domainspecific preferences on items, two effective attention mechanisms are further developed to selectively guide the message passing process. Moreover, to further enhance item- and account-level representation learning, we incorporate the time interval into the message passing, and design an account-aware self-attention module for learning items' interactive characteristics. Experiments demonstrate the superiority of our proposed method from various aspects.