论文标题

莫迪:来自不同数据的无条件运动综合

MoDi: Unconditional Motion Synthesis from Diverse Data

论文作者

Raab, Sigal, Leibovitch, Inbal, Li, Peizhuo, Aberman, Kfir, Sorkine-Hornung, Olga, Cohen-Or, Daniel

论文摘要

神经网络的出现彻底改变了运动综合领域。然而,学会从给定的分布中无条件合成动作仍然具有挑战性,尤其是当动作高度多样化时。在这项工作中,我们介绍了Modi - 一种生成模型,该模型在无监督的设置中训练了来自极其多样化,非结构化和未标记的数据集。在推断期间,莫迪可以综合高质量的不同动作。尽管数据集中缺乏任何结构,但我们的模型产生了一个行为良好且结构高度结构化的潜在空间,可以在语义上进行聚类,在构成强大的运动之前,促进了各种应用,包括语义编辑和人群模拟。此外,我们提出了一个编码器,该编码器将真实动作转化为莫迪自然运动歧管,并针对各种挑战(例如从前缀完成和空间编辑完成)发出解决方案。我们的定性和定量实验实现了最先进的结果,表现优于最近的SOTA技术。代码和训练有素的模型可在https://sigal-raab.github.io/modi上找到。

The emergence of neural networks has revolutionized the field of motion synthesis. Yet, learning to unconditionally synthesize motions from a given distribution remains challenging, especially when the motions are highly diverse. In this work, we present MoDi -- a generative model trained in an unsupervised setting from an extremely diverse, unstructured and unlabeled dataset. During inference, MoDi can synthesize high-quality, diverse motions. Despite the lack of any structure in the dataset, our model yields a well-behaved and highly structured latent space, which can be semantically clustered, constituting a strong motion prior that facilitates various applications including semantic editing and crowd simulation. In addition, we present an encoder that inverts real motions into MoDi's natural motion manifold, issuing solutions to various ill-posed challenges such as completion from prefix and spatial editing. Our qualitative and quantitative experiments achieve state-of-the-art results that outperform recent SOTA techniques. Code and trained models are available at https://sigal-raab.github.io/MoDi.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源