论文标题
Superhoneycomb lattices的矢量谷霍尔边缘孤子
Vector valley Hall edge solitons in superhoneycomb lattices
论文作者
论文摘要
分叉和继承拓扑保护的拓扑边缘孤子从线性边缘状态下进行拓扑保护,因此表现出对疾病的免疫力和传播后的缺陷,在迅速增长的拓扑光子学领域中引起了极大的关注。从实现拓扑边缘孤子的角度来看,山谷大厅系统特别有趣,因为它们不需要外部或人工磁场或纵向模型的纵向阶段出现。在这里,我们报告了在超级Honeycomb晶格之间形成的矢量谷霍尔边缘孤子的多样化类型,包括明亮 - 偶极,明亮的磨牙,黑暗和深色偶极孤子。与常规的标量拓扑孤子相反,该矢量状态可以作为来自不同分支的边缘状态和不同bloch momenta的边缘状态的信封孤子构造。这样的向量孤子可以非常健壮,它们显示出稳定的长距离传播,并且可以绕过域壁的急转弯。相同域壁上的反向传输谷霍尔边缘孤子的存在使我们能够在几乎弹性的碰撞时研究它们的结构鲁棒性。我们的结果说明了山谷大厅系统中的孤儿家族的丰富性,并为非线性拓扑功能设备的光场操作和设计开放了新的前景。
Topological edge solitons that bifurcate and inherit topological protection from linear edge states and, therefore, demonstrate immunity to disorder and defects upon propagation, attract considerable attention in a rapidly growing field of topological photonics. Valley Hall systems are especially interesting from the point of view of realization of topological edge solitons because they do not require external or artificial magnetic fields or longitudinal modulations of the underlying potential for the emergence of the topological phases. Here we report on the diverse types of vector valley Hall edge solitons forming at the domain walls between superhoneycomb lattices, including bright-dipole, bright-tripole, dark-bright, and dark-dipole solitons. In contrast to conventional scalar topological solitons, such vector states can be constructed as envelope solitons on the edge states from different branches and with different Bloch momenta. Such vector solitons can be remarkably robust, they show stable long-distance propagation and can bypass sharp bends of the domain wall. The existence of the counter-propagating valley Hall edge solitons at the same domain wall allows us to study their structural robustness upon collisions that can be nearly elastic. Our results illustrate richness of soliton families in the valley Hall systems and open new prospects for the light field manipulation and design of the nonlinear topological functional devices.