论文标题
带有深神经网络的侧can声纳的高分辨率测深重建
High-Resolution Bathymetric Reconstruction From Sidescan Sonar With Deep Neural Networks
论文作者
论文摘要
我们提出了一种新型的数据驱动方法,用于从侧can进行高分辨率测深的重建。侧面声纳(SSS)强度随范围的函数确实包含有关海底斜率的一些信息。但是,必须推断该信息。此外,导航系统提供了估计的轨迹,通常也可以使用该轨迹的高度。通过这些,我们获得了非常粗糙的海床测深,作为输入。然后将其与从侧扫的间接但高分辨率的海底斜坡信息结合在一起,以估计完整的测深。这个稀疏的深度可以通过单光束Echo Sounder,Doppler速度日志(DVL),其他底部跟踪传感器或底部跟踪算法从侧can本身获取。在我们的工作中,使用完全卷积的网络来估算侧扫图像中的深度轮廓及其不确定性,并以端到端的方式稀疏深度。然后将估计的深度与范围一起使用,以计算海底上点的3D位置。在融合了深度预测和来自神经网络的相应置信度度量后,可以重建高质量的测深图。我们显示了通过使用侧扫稀疏的深度与仅侧扫的估计来获得的测深图的改善。当将多个测深估计值融合到单个地图中时,我们还显示了置信度加权的好处。
We propose a novel data-driven approach for high-resolution bathymetric reconstruction from sidescan. Sidescan sonar (SSS) intensities as a function of range do contain some information about the slope of the seabed. However, that information must be inferred. Additionally, the navigation system provides the estimated trajectory, and normally the altitude along this trajectory is also available. From these we obtain a very coarse seabed bathymetry as an input. This is then combined with the indirect but high-resolution seabed slope information from the sidescan to estimate the full bathymetry. This sparse depth could be acquired by single-beam echo sounder, Doppler Velocity Log (DVL), other bottom tracking sensors or bottom tracking algorithm from sidescan itself. In our work, a fully convolutional network is used to estimate the depth contour and its aleatoric uncertainty from the sidescan images and sparse depth in an end-to-end fashion. The estimated depth is then used together with the range to calculate the point's 3D location on the seafloor. A high-quality bathymetric map can be reconstructed after fusing the depth predictions and the corresponding confidence measures from the neural networks. We show the improvement of the bathymetric map gained by using sparse depths with sidescan over estimates with sidescan alone. We also show the benefit of confidence weighting when fusing multiple bathymetric estimates into a single map.