论文标题

粒子过滤和高斯混合物 - 在局部混合物系数粒子滤波器(LMCPF)上用于全局NWP

Particle Filtering and Gaussian Mixtures -- On a Localized Mixture Coefficients Particle Filter (LMCPF) for global NWP

论文作者

Rojahn, Anne, Schenk, Nora, van Leeuwen, Peter Jan, Potthast, Roland

论文摘要

在全球数值天气预测(NWP)建模框架中,我们研究了单个颗粒的高斯不确定性的实现,以在局部自适应颗粒滤波器(LAPF)的同化步骤中。我们获得了先前分布的局部表示,作为基础函数的混合物。在同化步骤中,过滤器计算单个重量系数和新的粒子位置。它可以看作是LAPF和高斯混合物滤光片的局部版本的组合,即局部混合物系数粒子滤波器(LMCPF)。 在这里,我们研究了LMCPF在全球运营框架内的可行性,并评估了先前和后分布与观察之间的关系。我们的模拟是在全球观测系统,52公里全球分辨率和$ 10^6 $模型变量的标准前实验设置中进行的。计算同化步骤中粒子运动的统计数据。混合方法能够处理现实世界中的先前分布与观察位置之间的差异,并以比纯LAPF更好的方式将颗粒拉向观测值。这表明,使用高斯不确定性可能是改善粒子滤清器框架中分析和预测质量的重要工具。

In a global numerical weather prediction (NWP) modeling framework we study the implementation of Gaussian uncertainty of individual particles into the assimilation step of a localized adaptive particle filter (LAPF). We obtain a local representation of the prior distribution as a mixture of basis functions. In the assimilation step, the filter calculates the individual weight coefficients and new particle locations. It can be viewed as a combination of the LAPF and a localized version of a Gaussian mixture filter, i.e., a Localized Mixture Coefficients Particle Filter (LMCPF). Here, we investigate the feasibility of the LMCPF within a global operational framework and evaluate the relationship between prior and posterior distributions and observations. Our simulations are carried out in a standard pre-operational experimental set-up with the full global observing system, 52 km global resolution and $10^6$ model variables. Statistics of particle movement in the assimilation step are calculated. The mixture approach is able to deal with the discrepancy between prior distributions and observation location in a real-world framework and to pull the particles towards the observations in a much better way than the pure LAPF. This shows that using Gaussian uncertainty can be an important tool to improve the analysis and forecast quality in a particle filter framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源