论文标题
出色的偏光数据扩展用于公路娱乐分析
Physically-admissible polarimetric data augmentation for road-scene analysis
论文作者
论文摘要
偏光成像以及深度学习表明,包括场景分析在内的不同任务上的性能得到了改善。但是,由于培训数据集的尺寸很小,因此可能会质疑其鲁棒性。尽管该问题可以通过数据增强来解决,但两极分化方式仍受到经典数据增强技术未解决的物理可行性约束。为了解决这个问题,我们建议使用Cyclegan,这是一种基于深层生成模型的图像翻译技术,仅依赖于未配对的数据,将大型标记的Road场景数据集传输到偏光域。我们设计了几个辅助损失项,与自行车损失一起处理偏光图像的物理约束。在道路场景对象检测任务上证明了该解决方案的效率,在该任务中,生成的逼真的极化图像允许改善汽车和行人检测的性能高达9%。由此产生的约束周期gan公开释放,使任何人都可以生成自己的极化图像。
Polarimetric imaging, along with deep learning, has shown improved performances on different tasks including scene analysis. However, its robustness may be questioned because of the small size of the training datasets. Though the issue could be solved by data augmentation, polarization modalities are subject to physical feasibility constraints unaddressed by classical data augmentation techniques. To address this issue, we propose to use CycleGAN, an image translation technique based on deep generative models that solely relies on unpaired data, to transfer large labeled road scene datasets to the polarimetric domain. We design several auxiliary loss terms that, alongside the CycleGAN losses, deal with the physical constraints of polarimetric images. The efficiency of this solution is demonstrated on road scene object detection tasks where generated realistic polarimetric images allow to improve performances on cars and pedestrian detection up to 9%. The resulting constrained CycleGAN is publicly released, allowing anyone to generate their own polarimetric images.