论文标题
通过随时间变化的$θ$角度了解无质量QED的异常粒子产生
Understanding anomalous particle production in massless QED via time-varying $θ$ angle
论文作者
论文摘要
Maxwell方程暗示,在非零$ \ boldsymbol {b} $的背景下,改变$θ$ enter tarde $ \ boldsymbol {e} \ cdot \ boldsymbol {b} $。一个有趣的例子是Witten效应,其中磁性单极变成Dyon,但是,该效果应在效率的确切无质量极限中消失。 Callan通过在单极周围具有有效的轴突样自由度来理解这种现象的基本机制,这大约是费米子的相位。该轴的配置取消了$θ$项的效果。现在,手性异常意味着非变化的$ \ boldsymbol {e} \ cdot \ boldsymbol {b} $诱导系统中的手性电荷。问题是,当我们考虑到讨论中的轴突般的自由度时,手性电荷是否在无质量的限制中产生。讨论与在时间依赖性$θ$的背景下的男生成机理有关。我们通过将其减少到二维QED来解决无数QED的系统。我们证明了在两种情况下在静态磁场的背景下在静态磁场的背景下发生手性电荷的发生:磁单极和均匀的磁通量。对于单极案例,手动指控是从单子中出来的,同时取消了Witten效果。另一方面,对于均匀通量的情况,反应的效果不容忽视,从而产生了更加不平凡的时间依赖性。我们还讨论了它们对男性生成的影响。
The Maxwell equations imply that, under the background of non-zero $\boldsymbol{B}$, varying $θ$ term produces $\boldsymbol{E} \cdot \boldsymbol{B}$. An interesting example is the Witten effect where a magnetic monopole becomes a dyon which, however, should disappear in the exact massless limit of the fermion. Underlying mechanism of this phenomenon has been understood by Callan by the presence of an effective axion-like degree of freedom around the monopole, which is roughly the phase of the fermions. The configuration of this axion cancels the effect of the $θ$ term. Now, the chiral anomaly implies that non-vanishing $\boldsymbol{E} \cdot \boldsymbol{B}$ induces the chiral charge in the system. The question is whether the chiral charge is generated in the massless limit when we take into account the axion-like degree of freedom in the discussion. The discussion is relevant for the mechanism of baryogenesis under the background of time-dependent $θ$. We solve the system of the massless QED with time dependent $θ$ by reducing it to the two-dimensional QED. We demonstrate the occurrence of chiral charge generation in the background of static magnetic field for two cases: a magnetic monopole and a uniform magnetic flux. For the monopole case, the chiral charge comes out from the monopole while canceling the Witten effect. For the case of the uniform flux, on the other hand, the effect of the backreaction cannot be ignored, giving a more non-trivial time dependence. We also discuss their implications on baryogenesis.