论文标题
悬浮的纳米颗粒阵列中的可调高斯纠缠
Tuneable Gaussian entanglement in levitated nanoparticle arrays
论文作者
论文摘要
被困在光学镊子中的纳米颗粒是研究量子物理学基本效果的有趣平台。使用空间光调制和使用相干散射到光腔模式的运动量捕获电势的能力使它们易于模拟一系列物理系统并使用大量物体研究量子现象。为了将悬浮的纳米颗粒的这些能力扩展到量子多体系统,至关重要的是,开发可行的策略以直接或通过常见的光总线纠缠并纠缠多个颗粒。在这里,我们提出了一个可变和确定性的方案,以在多个腔模式下使用相干散射在多个悬浮的纳米颗粒的运动稳态下产生高斯纠缠。将多个纳米颗粒耦合到常见的光腔模式,可以将集体Bogoliubov模式冷却到其量子基态。冷却多个Bogoliubov模式(通过将每个粒子捕获在多个镊子中,以使每个镊子将光子散布到单独的腔模式中)消除了大多数热噪声,从而导致纳米颗粒之间的强纠缠。我们提供了三个纳米颗粒的数值模拟,显示了与现实的实验参数的生成纠缠的极大可调性。因此,我们的建议为创建高级量子传感方案和多体量子模拟的多个悬浮纳米颗粒的复杂量子状态铺平了道路。
Nanoparticles trapped in optical tweezers emerged as an interesting platform for investigating fundamental effects in quantum physics. The ability to shape the optical trapping potential using spatial light modulation and quantum control of their motion using coherent scattering to an optical cavity mode predispose them for emulating a range of physical systems and studying quantum phenomena with massive objects. To extend these capabilities of levitated nanoparticles to quantum many-body systems, it is crucial to develop feasible strategies to couple and entangle multiple particles either directly or via a common optical bus. Here, we propose a variable and deterministic scheme to generate Gaussian entanglement in the motional steady state of multiple levitated nanoparticles using coherent scattering to multiple cavity modes. Coupling multiple nanoparticles to a common optical cavity mode allows cooling of a collective Bogoliubov mode to its quantum ground state; cooling multiple Bogoliubov modes (enabled by trapping each particle in multiple tweezers such that each tweezer scatters photons into a separate cavity mode) removes most thermal noise, leading to strong entanglement between nanoparticles. We present numerical simulations for three nanoparticles showing great tuneability of the generated entanglement with realistic experimental parameters. Our proposal thus paves the way towards creating complex quantum states of multiple levitated nanoparticles for advanced quantum sensing protocols and many-body quantum simulations.