论文标题
现代的机器学习预测模型,用于诊断传染病
Modern Machine-Learning Predictive Models for Diagnosing Infectious Diseases
论文作者
论文摘要
控制传染病是一个主要的健康优先事项,因为它们可以传播和感染人类,从而演变为流行病或流行病。因此,早期发现传染病是一种重要需求,许多研究人员已经开发了在早期诊断它们的模型。本文审查了用于传染病诊断的最新机器学习(ML)算法的研究文章。我们从2015年至2022年搜索了科学,ScienceDirect,PubMed,Springer和IEEE数据库,确定了审查的ML模型的优缺点,并讨论了推进该领域研究的可能建议。我们发现大多数文章都使用了小数据集,其中很少有实时数据。我们的结果表明,合适的ML技术取决于数据集的性质和所需的目标。
Controlling infectious diseases is a major health priority because they can spread and infect humans, thus evolving into epidemics or pandemics. Therefore, early detection of infectious diseases is a significant need, and many researchers have developed models to diagnose them in the early stages. This paper reviewed research articles for recent machine-learning (ML) algorithms applied to infectious disease diagnosis. We searched the Web of Science, ScienceDirect, PubMed, Springer, and IEEE databases from 2015 to 2022, identified the pros and cons of the reviewed ML models, and discussed the possible recommendations to advance the studies in this field. We found that most of the articles used small datasets, and few of them used real-time data. Our results demonstrated that a suitable ML technique depends on the nature of the dataset and the desired goal.