论文标题

使用机器学习检测磁流失动力波

Detection of magnetohydrodynamic waves by using machine learning

论文作者

Chen, Fang, Samtaney, Ravi

论文摘要

磁性水力动力学(MHD)中的非线性波相互作用,例如倾斜密度界面的冲击折射,导致多种波形类型的波模式。在这种复杂的波模式下,识别不同类型的MHD波是一项重要且具有挑战性的任务。此外,由于解决方案的多样性及其对不同系统的可接受性,尤其是对于中等类型的MHD冲击波,如果仅依靠Rankine-Hugoniot跳跃条件,则MHD波类型的识别是复杂的。通过数值模拟中不连续的冲击波的非物理涂抹,MHD波检测进一步加剧了。我们提出了基于卷积神经网络(CNN)的两种MHD波检测方法,该方法可以分类波和鉴定其位置。第一种方法将输出分为回归(位置预测),并假设每个训练数据的波数固定,则分类问题。在第二种方法中,仅使用回归预测波浪的数量并未指定算法和算法预测波浪的位置并分类其类型。第一个固定输出模型有效地提供了高精度和回忆,所达到的整个神经网络的精度最高为0.99,并且某些波的分类精度接近统一。第二个检测模型的性能相对较低,对参数设置的敏感性更高,例如网格单元的数量n_ {grid}以及置信度评分和班级概率等的阈值等。所提出的两种方法表明,在某些复杂的波浪结构和相互作用中,在某些复杂的波浪结构和相互作用中对MHD波检测应用非常强的潜力。

Nonlinear wave interactions, such as shock refraction at an inclined density interface, in magnetohydrodynamic (MHD) lead to a plethora of wave patterns with myriad wave types. Identification of different types of MHD waves is an important and challenging task in such complex wave patterns. Moreover, owing to the multiplicity of solutions and their admissibility for different systems, especially for intermediate-type MHD shock waves, the identification of MHD wave types is complicated if one solely relies on the Rankine-Hugoniot jump conditions. MHD wave detection is further exacerbated by the unphysical smearing of discontinuous shock waves in numerical simulations. We present two MHD wave detection methods based on a convolutional neural network (CNN) which enables the classification of waves and identification of their locations. The first method separates the output into a regression (location prediction) and a classification problem assuming the number of waves for each training data is fixed. In the second method, the number of waves is not specified a priori and the algorithm, using only regression, predicts the waves' locations and classifies their types. The first fixed output model efficiently provides high precision and recall, the accuracy of the entire neural network achieved is up to 0.99, and the classification accuracy of some waves approaches unity. The second detection model has relatively lower performance, with more sensitivity to the setting of parameters, such as the number of grid cells N_{grid} and the thresholds of confidence score and class probability, etc. The proposed two methods demonstrate very strong potential to be applied for MHD wave detection in some complex wave structures and interactions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源