论文标题
文章的附录“全球多键率理论在一个琐碎的领域上”
Addendum to the article `Global pluripotential theory over a trivially valued field'
论文作者
论文摘要
本说明是本文撰写的“全局多功能理论”的附录,目前的作者在其中证明了两个结果。让$ x $是代数封闭的田地$ k $的不可约的投影品种,并假设$ k $具有特征性零,或者$ x $最多具有两个尺寸。我们首先证明,当$ x $平滑时,信封属性将用于$ x $上的任何数字类。然后,我们证明,对于$ x $,可能是单数,对于足够的数字类别,有界函数的蒙格 - amge-ampère能量等于其USC正则化的Plurisubharmonic Invelope的能量。
This note is an addendum to the paper `Global pluripotential theory over a trivially valued field' by the present authors, in which we prove two results. Let $X$ be an irreducible projective variety over an algebraically closed field field $k$, and assume that $k$ has characteristic zero, or that $X$ has dimension at most two. We first prove that when $X$ is smooth, the envelope property holds for any numerical class on $X$. Then we prove that for $X$ possibly singular and for an ample numerical class, the Monge--Ampère energy of a bounded function is equal to the energy of its usc regularized plurisubharmonic envelope.