论文标题

具有空间不均匀吸收的扩散方程的有限时间灭绝

Finite time extinction for a diffusion equation with spatially inhomogeneous strong absorption

论文作者

Iagar, Razvan Gabriel, Laurençot, Philippe

论文摘要

具有强吸收$$ $$ \ partial_t u-Δu^m+| x | x |^σu^q = 0,\ qquad(t,x)\ in(0,\ infty) $ q \ in(0,1)$和$σ> 0 $。引入关键指数$σ^*:= 2(1-q)/(M-1)$ $ m> 1 $和$σ_*= \ infty $ for $ m = 1 $,已知有限的时间在[0,σ^*)中以$σ\ in [0,σ^*)$而灭绝。当$ m> 1 $和$σ\geσ^*$时,有限时间灭绝的发生被证明是特定的初始条件类别的,从而补充了在非扩散范围内的$σ$中可用的结果,并显示出其清晰度。

The phenomenon of finite time extinction of bounded and non-negative solutions to the diffusion equation with strong absorption $$\partial_t u-Δu^m+|x|^σu^q=0, \qquad (t,x)\in(0,\infty)\times\mathbb{R}^N,$$ with $m\geq1$, $q\in(0,1)$ and $σ>0$, is addressed. Introducing the critical exponent $σ^* := 2(1-q)/(m-1)$ for $m>1$ and $σ_*=\infty$ for $m=1$, extinction in finite time is known to take place for $σ\in [0,σ^*)$ and an alternative proof is provided therein. When $m>1$ and $σ\ge σ^*$, the occurrence of finite time extinction is proved for a specific class of initial conditions, thereby supplementing results on non-extinction that are available in that range of $σ$ and showing their sharpness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源