论文标题
非交通性相位空间Lotka-Volterra动力学:量子类似物
Non-commutative phase-space Lotka-Volterra dynamics: the quantum analogue
论文作者
论文摘要
在Weyl-Wigner(WW)量子力学(QM)的框架内研究了Lotka-Volterra(LV)动力学,扩展到一维的Hamiltonian Systems,$ \ MATHCAL {H}(H}(X,X,\,K)$,受$ \ partial^2 \ nation^2 \ Mathcal的约束,$ n Mathcal of the $ n Mathcal of。在海森贝格 - 韦尔非共同代数的支持下,其中$ [x,\,k] = i $,根据LV变量来解释规范变量$ x $和$ k $,$ y = e = e = e^{ - x} $和$ z = e^= e^e^{ - k} $,最终与Primed of Systomsime的人相关联。 WW框架为识别经典和量子进化如何在不同尺度上共存以及量化{\ it量子模拟}效应的基础。通过相关的Wigner电流的结果,(非)liouvillian和固定特性被描述为热力学和高斯量子集合集合,以说明汉密尔顿对LV动力学描述所产生的经典相位空间图案的校正。特别是,对于高斯统计组合,Wigner流动框架为经典LV相位空间轨迹的量子修改提供了精确的轮廓,以便可以将高斯量子集合物解释为可以比较量子和经典制度的充分的Hilbert Space状态配置。这里开发的框架的一般性扩展了对量子样影响对竞争性生物系统的理解的界限。
The Lotka-Volterra (LV) dynamics is investigated in the framework of the Weyl-Wigner (WW) quantum mechanics (QM) extended to one-dimensional Hamiltonian systems, $\mathcal{H}(x,\,k)$, constrained by the $\partial^2 \mathcal{H} / \partial x \, \partial k = 0$ condition. Supported by the Heisenberg-Weyl non-commutative algebra, where $[x,\,k] = i$, the canonical variables $x$ and $k$ are interpreted in terms of the LV variables, $y = e^{-x}$ and $z = e^{-k}$, eventually associated with the number of individuals in a closed competitive dynamics: the so-called prey-predator system. The WW framework provides the ground for identifying how classical and quantum evolution coexist at different scales, and for quantifying {\it quantum analogue} effects. Through the results from the associated Wigner currents, (non-)Liouvillian and stationary properties are described for thermodynamic and gaussian quantum ensembles in order to account for the corrections due to quantum features over the classical phase-space pattern yielded by the Hamiltonian description of the LV dynamics. In particular, for gaussian statistical ensembles, the Wigner flow framework provides the exact profile for the quantum modifications over the classical LV phase-space trajectories so that gaussian quantum ensembles can be interpreted as an adequate Hilbert space state configuration for comparing quantum and classical regimes. The generality of the framework developed here extends the boundaries of the understanding of quantum-like effects on competitive microscopical bio-systems.