论文标题

深层隐式过程

Deep Variational Implicit Processes

论文作者

Ortega, Luis A., Santana, Simón Rodríguez, Hernández-Lobato, Daniel

论文摘要

隐式过程(IP)是高斯过程(GPS)的概括。 IPS可能缺乏封闭形式的表达,但很容易采样。例如,包括贝叶斯神经网络或神经抽样器。 IP可以用作功能的先验,从而产生具有良好预测不确定性估计值的灵活模型。基于IP的方法通常进行函数空间近似推断,从而克服了参数空间近似推断的一些困难。然而,所采用的近似值通常会限制最终模型的表现力,例如,在高斯预测分布中,这可能是限制的。我们在这里提出了IPS的多层概括,称为“深层隐含过程”(DVIP)。这种概括与GPS上的深GPS相似,但是由于使用IP作为潜在函数的先前分布,因此更灵活。我们描述了用于训练DVIP的可扩展变异推理算法,并表明它的表现优于先前的基于IP的方法和深度GPS。我们通过广泛的回归和分类实验来支持这些主张。我们还在大型数据集上评估了DVIP,最多数百万个数据实例,以说明其良好的可扩展性和性能。

Implicit processes (IPs) are a generalization of Gaussian processes (GPs). IPs may lack a closed-form expression but are easy to sample from. Examples include, among others, Bayesian neural networks or neural samplers. IPs can be used as priors over functions, resulting in flexible models with well-calibrated prediction uncertainty estimates. Methods based on IPs usually carry out function-space approximate inference, which overcomes some of the difficulties of parameter-space approximate inference. Nevertheless, the approximations employed often limit the expressiveness of the final model, resulting, e.g., in a Gaussian predictive distribution, which can be restrictive. We propose here a multi-layer generalization of IPs called the Deep Variational Implicit process (DVIP). This generalization is similar to that of deep GPs over GPs, but it is more flexible due to the use of IPs as the prior distribution over the latent functions. We describe a scalable variational inference algorithm for training DVIP and show that it outperforms previous IP-based methods and also deep GPs. We support these claims via extensive regression and classification experiments. We also evaluate DVIP on large datasets with up to several million data instances to illustrate its good scalability and performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源