论文标题

通过学习的感知模块和收缩理论从图像中获得的安全输出反馈运动计划

Safe Output Feedback Motion Planning from Images via Learned Perception Modules and Contraction Theory

论文作者

Chou, Glen, Ozay, Necmiye, Berenson, Dmitry

论文摘要

我们为一类不确定的控制型非线性系统提供了一种运动计划算法,该系统在使用高维传感器测量值(例如RGB-D图像)和反馈控制循环中的学习感知模块时,可确保运行时安全性和目标达到性能。首先,给定状态和观察数据集,我们训练一个感知系统,该系统试图从观察结果中倒入状态的一部分,并估算感知误差的上限,该误差在数据附近的受信任域中具有很高的概率有效。接下来,我们使用收缩理论来设计稳定的状态反馈控制器和收敛的动态观察者,该观察者使用学习的感知系统来更新其状态估计。当该控制器在动力学和错误状态估计中遇到错误时,我们会在轨迹跟踪误差上得出一个绑定。最后,我们将此绑定到基于采样的运动计划器中,引导它返回可以使用传感器数据在运行时安全跟踪的轨迹。我们证明了我们对4D车,6D平面四型二级管的模拟方法,以及使用RGB(-D)传感器测量的17D操纵任务,表明我们的方法安全可靠地将系统转向了目标,而无法考虑受信任的域或状态估计错误的基础可能不适合使用。

We present a motion planning algorithm for a class of uncertain control-affine nonlinear systems which guarantees runtime safety and goal reachability when using high-dimensional sensor measurements (e.g., RGB-D images) and a learned perception module in the feedback control loop. First, given a dataset of states and observations, we train a perception system that seeks to invert a subset of the state from an observation, and estimate an upper bound on the perception error which is valid with high probability in a trusted domain near the data. Next, we use contraction theory to design a stabilizing state feedback controller and a convergent dynamic state observer which uses the learned perception system to update its state estimate. We derive a bound on the trajectory tracking error when this controller is subjected to errors in the dynamics and incorrect state estimates. Finally, we integrate this bound into a sampling-based motion planner, guiding it to return trajectories that can be safely tracked at runtime using sensor data. We demonstrate our approach in simulation on a 4D car, a 6D planar quadrotor, and a 17D manipulation task with RGB(-D) sensor measurements, demonstrating that our method safely and reliably steers the system to the goal, while baselines that fail to consider the trusted domain or state estimation errors can be unsafe.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源