论文标题

从压力数据中估算具有深层图像姿势估计器的智能床的姿势

Estimating Pose from Pressure Data for Smart Beds with Deep Image-based Pose Estimators

论文作者

Davoodnia, Vandad, Ghorbani, Saeed, Etemad, Ali

论文摘要

内部的姿势估计显示出在医院患者监测,睡眠研究和智能家居等领域的价值。在本文中,我们探讨了借助现有的姿势估计器,从高度模棱两可的压力数据中检测身体姿势的不同策略。我们通过直接使用预训练的姿势估计器或通过在两个压力数据集上重新训练来检查预训练的姿势估计器的性能。我们还利用可学习的预处理域适应步骤探索了其他策略,该步骤将模糊的压力图转换为更接近共同目的姿势估计模块的预期输入空间的表示。因此,我们使用了具有多个量表的完全卷积网络,以向预训练的姿势估计模块提供压力图的姿势特异性特征。我们对不同方法的完整分析表明,在压力数据上,可学习的预处理模块的组合以及重新培训基于图像的姿势估计器能够克服高度模糊的压力点等问题,以达到非常高的姿势估计精度。

In-bed pose estimation has shown value in fields such as hospital patient monitoring, sleep studies, and smart homes. In this paper, we explore different strategies for detecting body pose from highly ambiguous pressure data, with the aid of pre-existing pose estimators. We examine the performance of pre-trained pose estimators by using them either directly or by re-training them on two pressure datasets. We also explore other strategies utilizing a learnable pre-processing domain adaptation step, which transforms the vague pressure maps to a representation closer to the expected input space of common purpose pose estimation modules. Accordingly, we used a fully convolutional network with multiple scales to provide the pose-specific characteristics of the pressure maps to the pre-trained pose estimation module. Our complete analysis of different approaches shows that the combination of learnable pre-processing module along with re-training pre-existing image-based pose estimators on the pressure data is able to overcome issues such as highly vague pressure points to achieve very high pose estimation accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源