论文标题
Gappy光谱正交分解
Gappy spectral proper orthogonal decomposition
论文作者
论文摘要
实验时空流量数据通常包含差距或其他类型的不想要的人工制品。为了重建受损或缺失区域中的流数据,开发了基于光谱正交分解(SPOD)的数据完成方法。该算法利用了SPOD模式与先前和成功的快照的时间相关性,以及它们与周围数据的空间相关性同时瞬间。对于每个差距,算法首先计算其余未受影响的数据的spod。在下一步中,折衷的数据将投影到SPOD模式的基础上。这对应于SPOD问题的局部反转,并产生允许在受影响区域进行重建的扩展系数。此局部重建依次应用于每个差距。填补所有缝隙后,以迭代方式重复该过程,直到收敛为止。该方法在两个示例中进行了证明:围绕圆柱体的层流的直接数值模拟,以及Zhang等人获得的湍流流量的时间分辨PIV数据。 (2019)。随机添加的间隙对应于1%,5%和20%的数据丢失。即使对于20%的数据损坏,在实验数据中存在测量噪声的情况下,该算法分别在模拟和PIV数据的损坏区域中恢复了97%和80%的原始数据。这些值高于通过Gappy Pod和Kriging等既定方法实现的值。
Experimental spatio-temporal flow data often contain gaps or other types of undesired artifacts. To reconstruct flow data in the compromised or missing regions, a data completion method based on spectral proper orthogonal decomposition (SPOD) is developed. The algorithm leverages the temporal correlation of the SPOD modes with preceding and succeeding snapshots, and their spatial correlation with the surrounding data at the same time instant. For each gap, the algorithm first computes the SPOD of the remaining, unaffected data. In the next step, the compromised data are projected onto the basis of the SPOD modes. This corresponds to a local inversion of the SPOD problem and yields expansion coefficients that permit the reconstruction in the affected regions. This local reconstruction is successively applied to each gap. After all gaps are filled in, the procedure is repeated in an iterative manner until convergence. This method is demonstrated on two examples: direct numerical simulation of laminar flow around a cylinder, and time-resolved PIV data of turbulent cavity flow obtained by Zhang et al. (2019). Randomly added gaps correspond to 1%, 5%, and 20% of data loss. Even for 20% data corruption, and in the presence of measurement noise in the experimental data, the algorithm recovers 97% and 80% of the original data in the corrupted regions of the simulation and PIV data, respectively. These values are higher than those achieved by established methods like gappy POD and Kriging.