论文标题
通用高空的有效周期
Effective cycles on universal hypersurfaces
论文作者
论文摘要
我们研究了投影品种$ x $的通用性高空上周期的有效锥,尤其是侧重于$ \ mathbb {p}^n $中的通用性超曲面的情况。我们确定$ \ mathbb {p}^2 $上通用锥上周期的有效锥。我们还确定在任何通用平面曲线上最多6或等于10的每个有效循环的有效锥。
We study the effective cones of cycles on universal hypersurfaces on a projective variety $X$, particularly focusing on the case of universal hypersurfaces in $\mathbb{P}^n$. We determine the effective cones of cycles on the universal conic over $\mathbb{P}^2$. We also determine every effective cone of cycles of dimension at most 6 or equal to 10 on any universal plane curve.