论文标题
暗网交通分类和对抗性攻击
Darknet Traffic Classification and Adversarial Attacks
论文作者
论文摘要
Darknets的匿名性质通常用于非法活动。先前的研究已采用机器学习和深度学习技术来自动对暗网流量的检测,以阻止这些犯罪活动。这项研究旨在通过评估支持向量机(SVM),随机森林(RF),卷积神经网络(CNN)和辅助分类器生成对抗网络(AC-GAN)来改善暗网的交通检测,以进行此类交通分类和底层应用类型。我们发现,我们的RF模型优于与CIC-Darknet2020数据集的先前工作中最新的机器学习技术。为了评估RF分类器的鲁棒性,我们混淆选择应用程序类型类,以模拟现实的对抗攻击方案。我们证明,我们表现最好的分类器可能会被这种攻击击败,我们考虑处理这种对抗性攻击的方法。
The anonymous nature of darknets is commonly exploited for illegal activities. Previous research has employed machine learning and deep learning techniques to automate the detection of darknet traffic in an attempt to block these criminal activities. This research aims to improve darknet traffic detection by assessing Support Vector Machines (SVM), Random Forest (RF), Convolutional Neural Networks (CNN), and Auxiliary-Classifier Generative Adversarial Networks (AC-GAN) for classification of such traffic and the underlying application types. We find that our RF model outperforms the state-of-the-art machine learning techniques used in prior work with the CIC-Darknet2020 dataset. To evaluate the robustness of our RF classifier, we obfuscate select application type classes to simulate realistic adversarial attack scenarios. We demonstrate that our best-performing classifier can be defeated by such attacks, and we consider ways to deal with such adversarial attacks.