论文标题

智能制造数据集上的异常检测和传感器间传输学习

Anomaly Detection and Inter-Sensor Transfer Learning on Smart Manufacturing Datasets

论文作者

Abdallah, Mustafa, Joung, Byung-Gun, Lee, Wo Jae, Mousoulis, Charilaos, Sutherland, John W., Bagchi, Saurabh

论文摘要

智能制造系统正在以越来越多的速度部署,因为它们能够解释各种各样的感知信息并根据系统观察收集的知识采取行动。在许多情况下,智能制造系统的主要目标是快速检测(或预期)失败以降低运营成本并消除停机时间。这通常归结为检测从系统中获取的传感器日期内的异常。智能制造应用域构成了某些显着的技术挑战。特别是,通常有多种具有不同功能和成本的传感器。传感器数据特性随环境或机器的操作点而变化,例如电动机的rpm。因此,必须在工作点附近校准异常检测过程。在本文中,我们分析了从制造测试台部署的传感器中的四个数据集。我们评估了几种基于传统和ML的预测模型的性能,以预测传感器数据的时间序列。然后,考虑到一种传感器的稀疏数据,我们从高数据速率传感器中执行传输学习来执行缺陷类型分类。综上所述,我们表明可以实现预测性故障分类,从而为预测维护铺平了道路。

Smart manufacturing systems are being deployed at a growing rate because of their ability to interpret a wide variety of sensed information and act on the knowledge gleaned from system observations. In many cases, the principal goal of the smart manufacturing system is to rapidly detect (or anticipate) failures to reduce operational cost and eliminate downtime. This often boils down to detecting anomalies within the sensor date acquired from the system. The smart manufacturing application domain poses certain salient technical challenges. In particular, there are often multiple types of sensors with varying capabilities and costs. The sensor data characteristics change with the operating point of the environment or machines, such as, the RPM of the motor. The anomaly detection process therefore has to be calibrated near an operating point. In this paper, we analyze four datasets from sensors deployed from manufacturing testbeds. We evaluate the performance of several traditional and ML-based forecasting models for predicting the time series of sensor data. Then, considering the sparse data from one kind of sensor, we perform transfer learning from a high data rate sensor to perform defect type classification. Taken together, we show that predictive failure classification can be achieved, thus paving the way for predictive maintenance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源