论文标题

校准量子近似优化算法的经典硬度

Calibrating the Classical Hardness of the Quantum Approximate Optimization Algorithm

论文作者

Dupont, Maxime, Didier, Nicolas, Hodson, Mark J., Moore, Joel E., Reagor, Matthew J.

论文摘要

对规模的交易保真度可以使近似的经典模拟器(例如矩阵量状态)(MPS)运行超出精确方法的量子电路。控制参数,即MPS的所谓债券维度$χ$,控制了分配的计算资源和输出保真度。在这里,我们表征了量子近似优化算法的忠诚度,它通过其寻求最小化的成本函数的期望值,并发现它遵循了缩放定律$ f \ bigl(\lnχ\ bigr/n \ bigr)$,$ n $ n $ n $ qubits的数量。 $ \lnχ$等于国会议员可以编码的纠缠,我们表明,调查保真度的相关变量是每个量子的纠缠。重要的是,我们的结果校准了实现所需的保真度所需的经典计算能力,并基于现实设置中的量子硬件的性能。例如,我们通过容易将其输出与缩放函数匹配,比嘈杂的超导量子处理器量化了经典表现更好的硬度。此外,我们将全球保真度与个人运营的忠诚联系起来,并与$χ$和$ n $建立了关系。我们提高了嘈杂量子计算机在运行速度,尺寸和忠诚度的量子优化算法方面优于经典技术的要求。

Trading fidelity for scale enables approximate classical simulators such as matrix product states (MPS) to run quantum circuits beyond exact methods. A control parameter, the so-called bond dimension $χ$ for MPS, governs the allocated computational resources and the output fidelity. Here, we characterize the fidelity for the quantum approximate optimization algorithm by the expectation value of the cost function it seeks to minimize and find that it follows a scaling law $F\bigl(\lnχ\bigr/N\bigr)$ with $N$ the number of qubits. With $\lnχ$ amounting to the entanglement that an MPS can encode, we show that the relevant variable for investigating the fidelity is the entanglement per qubit. Importantly, our results calibrate the classical computational power required to achieve the desired fidelity and benchmark the performance of quantum hardware in a realistic setup. For instance, we quantify the hardness of performing better classically than a noisy superconducting quantum processor by readily matching its output to the scaling function. Moreover, we relate the global fidelity to that of individual operations and establish its relationship with $χ$ and $N$. We sharpen the requirements for noisy quantum computers to outperform classical techniques at running a quantum optimization algorithm in speed, size, and fidelity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源