论文标题

粗细的结节计数和拓扑持久性

Coarse nodal count and topological persistence

论文作者

Buhovsky, Lev, Payette, Jordan, Polterovich, Iosif, Polterovich, Leonid, Shelukhin, Egor, Stojisavljević, Vukašin

论文摘要

Courant的定理意味着Laplace特征功能的节点域的数量由相应的特征值控制。多年来,已经有各种尝试在不同方向上找到对该陈述的适当概括。我们使用拓扑数据分析中的想法提出了对这个问题的新看法。我们表明,如果一个人以粗糙的方式计数节点域,基本上忽略了小振荡,那么Courant的定理将其特征函数的线性组合扩展到其产品,其他操作员,以及较高的节点组合的拓扑结构。我们还获得了对本征函数线性组合常见零的Bézout估计的粗略版本。我们表明我们的结果基本上是尖锐的,并且必须粗略计数,因为这些扩展程序总体上对标准计数失败。我们的方法结合了Sobolev空间中的多项式多项式近似,并在持久模块和条形码理论中结合了新的结果。

Courant's theorem implies that the number of nodal domains of a Laplace eigenfunction is controlled by the corresponding eigenvalue. Over the years, there have been various attempts to find an appropriate generalization of this statement in different directions. We propose a new take on this problem using ideas from topological data analysis. We show that if one counts the nodal domains in a coarse way, basically ignoring small oscillations, Courant's theorem extends to linear combinations of eigenfunctions, to their products, to other operators, and to higher topological invariants of nodal sets. We also obtain a coarse version of the Bézout estimate for common zeros of linear combinations of eigenfunctions. We show that our results are essentially sharp and that the coarse count is necessary, since these extensions fail in general for the standard count. Our approach combines multiscale polynomial approximation in Sobolev spaces with new results in the theory of persistence modules and barcodes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源