论文标题

具有多项式复杂性的基于得分的生成建模的收敛性

Convergence for score-based generative modeling with polynomial complexity

论文作者

Lee, Holden, Lu, Jianfeng, Tan, Yixin

论文摘要

基于分数的生成建模(SGM)是一种从数据中学习概率分布并生成更多样本的非常成功的方法。我们证明了SGM背后的核心机械师的第一个多项式收敛保证:从概率密度$ p $中绘制样品估计(估计为$ \ nabla \ ln p $),该样本在$ l^2(p)$中是准确的。与以前的工作相比,我们不会产生误差,该错误会在时间上呈指数增长或受到维度诅咒的影响。我们的保证对任何平滑分布都有效,并且在多个方面取决于其对数 - sobolev常数。使用我们的保证,我们对基于分数的生成建模进行了理论分析,该模型将白色噪声输入转换为从不同噪声量表下得分估计的学习数据分布的样本。我们的分析将理论上的基础表明,在实践中需要进行退火程序以生成好样本,因为我们的证明基本上取决于使用退火以在每个步骤中获得温暖的开始。此外,我们表明,与单独使用任何一部分相比,预测指标算法可提供更好的收敛性。

Score-based generative modeling (SGM) is a highly successful approach for learning a probability distribution from data and generating further samples. We prove the first polynomial convergence guarantees for the core mechanic behind SGM: drawing samples from a probability density $p$ given a score estimate (an estimate of $\nabla \ln p$) that is accurate in $L^2(p)$. Compared to previous works, we do not incur error that grows exponentially in time or that suffers from a curse of dimensionality. Our guarantee works for any smooth distribution and depends polynomially on its log-Sobolev constant. Using our guarantee, we give a theoretical analysis of score-based generative modeling, which transforms white-noise input into samples from a learned data distribution given score estimates at different noise scales. Our analysis gives theoretical grounding to the observation that an annealed procedure is required in practice to generate good samples, as our proof depends essentially on using annealing to obtain a warm start at each step. Moreover, we show that a predictor-corrector algorithm gives better convergence than using either portion alone.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源