论文标题
$ su(2)$ - 对称性破坏骨气混合物的精确解决方案
Exact solution for $SU(2)$-symmetry breaking bosonic mixtures at strong interactions
论文作者
论文摘要
我们研究了在强烈的物种间相互作用的极限下,在环几何形状上研究了两吨甲状腺气体的一维混合物的平衡性能。我们得出确切的多体波函数,并将其与$ su(2)$解决方案进行比较,其中内物种和种间相互作用也有所不同,但相等。我们专注于$ su(2)$ - 对称性破坏,通过研究零摩托明的职业数量和棕褐色的接触,从动量分布的渐近行为中进行了大距离相关性的行为。尽管对称性仅被薄弱,但它对系统中的自旋相关性具有重要的后果,因为相对于$ su(2)$案例,在热力学极限和棕褐色接触的下降方面,零摩孔占用数量的降低。
We study the equilibrium properties of a one-dimensional mixture of two Tonks-Girardeau gases on a ring geometry in the limit of strongly-repulsive inter-species interactions. We derive the exact many-body wavefunction and compare it to the $SU(2)$ solution where intra- and inter-species interactions are also diverging but equal. We focus on the role of the $SU(2)$-symmetry breaking on the behaviour of the large- and short-distance correlations by studying the zero-momentum occupation number and the Tan's contact from the asymptotic behavior of the momentum distribution. Although the symmetry is only weakly broken, it has important consequences on spin correlations in the system as the reduction by a factor of two of the zero-momentum occupation number with respect to the $SU(2)$ case in the thermodynamic limit and the decrease of the Tan's contact.