论文标题

用中子星的结构和热演化探测强场$ f(r)$重力和超密集物质

Probing Strong Field $f(R)$ Gravity and Ultra-Dense Matter with the Structure and Thermal Evolution of Neutron Stars

论文作者

Nava-Callejas, Martín, Page, Dany, Beznogov, Mikhail V.

论文摘要

在$ f(r)= r+αr^{2} $重力理论中研究中子星的热演化。我们首先描述了球形对称时空的恒星结构和演变的方程,并在休息时出现完美的流体。然后,我们使用四个状态的核次密集物质方程和一系列重力理论的$α$范围从零(即一般相对论),最高$α\ ablety $α\约10^{16} $ cm $^2 $。我们强调了这些中子星模型的性质,这些模型与它们的热演化相关,作为通过直接URCA过程增强中微子发射的阈值质量,允许这种中微子发射的恒星核心的适当体积,允许地壳厚度,以及直接影响可观有效温度的表面重力。最后,我们通过数值求解热进化的方程,并明确分析改变重力的影响。我们发现,密集物理物理学中的不确定性,因为核心化学成分和超流量/超导性特性以及表面层化学成分的天体物理不确定性比在研究的$ f(r)$ theories $ f(r)$ theiores中具有比可能重力的可能修饰要强得多。我们得出的结论是,在这种重力理论家族中,先前对中子星热进化的研究得出的结论不会因重力改变而显着改变。相反,这意味着中子星冷却建模可能不是限制重力偏离爱因斯坦理论的有用工具,除非它们比$ f(r)= r+αr^{2} $框架更为激进。

Thermal evolution of neutron stars is studied in the $f(R)=R+αR^{2}$ theory of gravity. We first describe the equations of stellar structure and evolution for a spherically symmetric spacetime plus a perfect fluid at rest. We then present numerical results for the structure of neutron stars using four nucleonic dense matter equations of state and a series of gravity theories for $α$ ranging from zero, i.e., General Relativity, up to $α\approx 10^{16}$ cm$^2$. We emphasize properties of these neutron star models that are of relevance for their thermal evolution as the threshold masses for enhanced neutrino emission by the direct Urca process, the proper volume of the stellar cores where this neutrino emission is allowed, the crust thickness, and the surface gravitational acceleration that directly impact the observable effective temperature. Finally, we numerically solve the equations of thermal evolution and explicitly analyze the effects of altering gravity. We find that uncertainties in the dense matter microphysics, as the core chemical composition and superfluidity/superconductivity properties, as well as the astrophysical uncertainties on the chemical composition of the surface layers, have a much stronger impact than possible modifications of gravity within the studied family of $f(R)$ theories. We conclude that within this family of gravity theories, conclusions from previous studies of neutron star thermal evolution are not significantly altered by alteration of gravity. Conversely, this implies that neutron star cooling modeling may not be a useful tool to constrain deviations of gravity from Einstein theory unless these are much more radical than in the $f(R)=R+αR^{2}$ framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源