论文标题

相关比率转移学习和变异Stein的悖论

A Correlation-Ratio Transfer Learning and Variational Stein's Paradox

论文作者

Lin, Lu, Li, Weiyu

论文摘要

有效传输学习的基本条件是目标模型和源模型之间的相似性。但是,实际上,相似条件很难满足甚至违反。本文引入了一种崭新的策略,即线性相关比率,而不是相似性条件,以建立模型之间的准确关系。这种相关比率可以通过历史数据或样本的一部分轻松估算。然后,基于相关比率组合建立了相关比率传递学习可能性。在实际方面,新框架应用于某些应用程序方案,尤其是数据流和医学研究领域。从方法论上讲,建议将信息从简单的源模型传输到相对复杂的目标模型。从理论上讲,即使在源模型与目标模型不同的情况下,也可以达到一些有利的属性,包括全局收敛率。总而言之,可以从理论和实验结果中可以看出,从类似或不同的源模型的信息可以显着改善目标模型的推断。换句话说,在转移学习的背景下说明了变异的Stein的悖论。

A basic condition for efficient transfer learning is the similarity between a target model and source models. In practice, however, the similarity condition is difficult to meet or is even violated. Instead of the similarity condition, a brand-new strategy, linear correlation-ratio, is introduced in this paper to build an accurate relationship between the models. Such a correlation-ratio can be easily estimated by historical data or a part of sample. Then, a correlation-ratio transfer learning likelihood is established based on the correlation-ratio combination. On the practical side, the new framework is applied to some application scenarios, especially the areas of data streams and medical studies. Methodologically, some techniques are suggested for transferring the information from simple source models to a relatively complex target model. Theoretically, some favorable properties, including the global convergence rate, are achieved, even for the case where the source models are not similar to the target model. All in all, it can be seen from the theories and experimental results that the inference on the target model is significantly improved by the information from similar or dissimilar source models. In other words, a variational Stein's paradox is illustrated in the context of transfer learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源