论文标题

环形计算成像:通过简单镜头捕获清晰的全景图像

Annular Computational Imaging: Capture Clear Panoramic Images through Simple Lens

论文作者

Jiang, Qi, Shi, Hao, Sun, Lei, Gao, Shaohua, Yang, Kailun, Wang, Kaiwei

论文摘要

由很少的镜头组成的全景环形透镜(PAL)在全景周围具有巨大的移动和可穿戴设备的传感任务,因为其尺寸很小,并且较大的视野(FOV)。但是,由于缺乏畸变校正的镜头,小体积PAL的图像质量仅限于光学上限。在本文中,我们提出了一个环形计算成像(ACI)框架,以打破轻质PAL设计的光学限制。为了促进基于学习的图像恢复,我们引入了基于波浪的模拟管道,用于全景成像,并通过多个数据分布来应对合成间隙。提出的管道可以轻松地使用具有设计参数的任何PAL,并且适用于宽松的设计。此外,我们考虑了全景成像和单通道物理学发动机的物理先验,我们设计了物理知情的图像恢复网络(PI2RNET)。在数据集级别上,我们创建了Divpano数据集,其广泛的实验表明,我们提出的网络在空间变化的降级下在全景图像恢复中设置了新的最新技术。此外,对只有3个球形镜头的简单PAL上提出的ACI的评估揭示了高质量的全景成像与紧凑设计之间的微妙平衡。据我们所知,我们是第一个探索PAL中计算成像(CI)的人。代码和数据集可在https://github.com/zju-jiangqi/aci-pi2rnet上公开获取。

Panoramic Annular Lens (PAL) composed of few lenses has great potential in panoramic surrounding sensing tasks for mobile and wearable devices because of its tiny size and large Field of View (FoV). However, the image quality of tiny-volume PAL confines to optical limit due to the lack of lenses for aberration correction. In this paper, we propose an Annular Computational Imaging (ACI) framework to break the optical limit of light-weight PAL design. To facilitate learning-based image restoration, we introduce a wave-based simulation pipeline for panoramic imaging and tackle the synthetic-to-real gap through multiple data distributions. The proposed pipeline can be easily adapted to any PAL with design parameters and is suitable for loose-tolerance designs. Furthermore, we design the Physics Informed Image Restoration Network (PI2RNet) considering the physical priors of panoramic imaging and single-pass physics-informed engine. At the dataset level, we create the DIVPano dataset and the extensive experiments on it illustrate that our proposed network sets the new state of the art in the panoramic image restoration under spatially-variant degradation. In addition, the evaluation of the proposed ACI on a simple PAL with only 3 spherical lenses reveals the delicate balance between high-quality panoramic imaging and compact design. To the best of our knowledge, we are the first to explore Computational Imaging (CI) in PAL. Code and datasets are publicly available at https://github.com/zju-jiangqi/ACI-PI2RNet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源