论文标题
双曲线$ 2 $和$ 3 $ - 空格的算术量子量量子独特
Arithmetic quantum unique ergodicity for products of hyperbolic $2$- and $3$-spaces
论文作者
论文摘要
我们证明了Hecke-maass形式序列$γ\ BackSlash(\ Mathbb {h}^{(2)}^r \ times(\ mathbb {\ mathbb {h}^{H}^{(3)})^s $的静脉量子量子唯一独特的Ergodicition(aqu)suptionuture(aqu)supenture(aqu)supenture(aque)supenture。通过诱导轨道尺寸的论点使我们能够排除集中在适当子组的闭合轨道上的极限度量,尽管Hecke对应到轨道的邻居。
We prove the arithemtic quantum unique ergodicity (AQUE) conjecture for sequences of Hecke--Maass forms on quotients $Γ\backslash (\mathbb{H}^{(2)})^r \times (\mathbb{H}^{(3)})^s$. An argument by induction on dimension of the orbit allows us to rule out the limit measure concentrating on closed orbits of proper subgroups despite many returns of the Hecke correspondence to neighborhoods of the orbit.