论文标题

确定点过程的懒惰和快速贪婪的地图推断

Lazy and Fast Greedy MAP Inference for Determinantal Point Process

论文作者

Hemmi, Shinichi, Oki, Taihei, Sakaue, Shinsaku, Fujii, Kaito, Iwata, Satoru

论文摘要

确定点过程(DPP)的最大后验(MAP)推断对于在许多机器学习应用中选择多种项目至关重要。尽管DPP MAP推断是NP-HARD,但贪婪的算法通常会发现高质量的解决方案,许多研究人员已经研究了其有效的实施。一种经典且实用的方法是懒惰的贪婪算法,适用于一般的下函数最大化,而基于Cholesky的最新快速贪婪算法对于DPP MAP推断更有效。本文介绍了如何结合“懒惰”和“快速”的思想,这些思想在文献中被认为是不兼容的。我们懒惰且贪婪的算法与当前最好的算法几乎具有相同的时间复杂性,并且在实践中运行速度更快。 “懒惰 +快速”的想法可扩展到其他贪婪型算法。我们还为无约束的DPP地图推断提供了双贪婪算法的快速版本。实验验证了我们加速思想的有效性。

The maximum a posteriori (MAP) inference for determinantal point processes (DPPs) is crucial for selecting diverse items in many machine learning applications. Although DPP MAP inference is NP-hard, the greedy algorithm often finds high-quality solutions, and many researchers have studied its efficient implementation. One classical and practical method is the lazy greedy algorithm, which is applicable to general submodular function maximization, while a recent fast greedy algorithm based on the Cholesky factorization is more efficient for DPP MAP inference. This paper presents how to combine the ideas of "lazy" and "fast", which have been considered incompatible in the literature. Our lazy and fast greedy algorithm achieves almost the same time complexity as the current best one and runs faster in practice. The idea of "lazy + fast" is extendable to other greedy-type algorithms. We also give a fast version of the double greedy algorithm for unconstrained DPP MAP inference. Experiments validate the effectiveness of our acceleration ideas.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源