论文标题

自适应多机器人对异质群的隐式控制

Adaptive Multi-robot Implicit Control of Heterogeneous Herds

论文作者

Sebastián, Eduardo, Montijano, Eduardo, Sagüés, Carlos

论文摘要

本文通过一组机器人牧民为群的非合作逃避者提供了一种新颖的控制策略。在放牧问题中,逃避者的运动通常取决于强烈的非线性和异质性反应动力学,这使得柔性控制解决方案的发展成为一个具有挑战性的问题。在这种情况下,我们提出了隐式控制,即即使逃避动力中的非线性屈服于隐式方程,也利用数值分析理论来找到合适的放牧输入的方法。这种方法背后的直觉在于推动输入而不是计算它,而不是将其计算为实现群体所需的动态行为的未知值。利用同样的想法来制定适应定律,并保证了稳定性,并应对牛群模型中的不确定性。此外,我们的解决方案是通过基于不确定性模型和控制屏障功能(CBF)的新型凯奇技术以及分布式估计器来完成的,以克服完全完美的测量。不同的模拟和实验验证了该提案的一般性和灵活性。

This paper presents a novel control strategy to herd groups of non-cooperative evaders by means of a team of robotic herders. In herding problems, the motion of the evaders is typically determined by strongly nonlinear and heterogeneous reactive dynamics, which makes the development of flexible control solutions a challenging problem. In this context, we propose Implicit Control, an approach that leverages numerical analysis theory to find suitable herding inputs even when the nonlinearities in the evaders' dynamics yield to implicit equations. The intuition behind this methodology consists in driving the input, rather than computing it, towards the unknown value that achieves the desired dynamic behavior of the herd. The same idea is exploited to develop an adaptation law, with stability guarantees, that copes with uncertainties in the herd's models. Moreover, our solution is completed with a novel caging technique based on uncertainty models and Control Barrier Functions (CBFs), together with a distributed estimator to overcome the need of complete perfect measurements. Different simulations and experiments validate the generality and flexibility of the proposal.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源