论文标题

实时图像检测和识别的AI分类算法的效率比较

Efficiency Comparison of AI classification algorithms for Image Detection and Recognition in Real-time

论文作者

Nipun, Musarrat Saberin, Sulaiman, Rejwan Bin, Kareem, Amer

论文摘要

面部检测和识别是人工智能系统中最困难,经常使用的任务。这项研究的目的是介绍和比较系统中使用的几种面部检测和识别算法的结果。该系统始于人类的训练图像,然后继续进行测试图像,识别面部,将其与受过训练的面部进行比较,最后使用OPENCV分类器对其进行分类。这项研究将讨论系统中使用的最有效,最成功的策略,这些策略是使用Python,OpenCV和Matplotlib实施的。它也可以用于CCTV的位置,例如公共场所,购物中心和ATM摊位。

Face detection and identification is the most difficult and often used task in Artificial Intelligence systems. The goal of this study is to present and compare the results of several face detection and recognition algorithms used in the system. This system begins with a training image of a human, then continues on to the test image, identifying the face, comparing it to the trained face, and finally classifying it using OpenCV classifiers. This research will discuss the most effective and successful tactics used in the system, which are implemented using Python, OpenCV, and Matplotlib. It may also be used in locations with CCTV, such as public spaces, shopping malls, and ATM booths.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源