论文标题
计算性模型:代数,拓扑和几何算法
Computability Models: Algebraic, Topological and Geometric Algorithms
论文作者
论文摘要
$ PSL(2,\ Mathbb {r})$和$ PSL(2,\ Mathbb {C})$有限生成的子组的离散性问题是一个长期存在的开放问题。在本文中,我们考虑该问题是否可以通过算法来确定。我们的主要结果是答案取决于选择哪种计算模型。由于我们的讨论涉及可计算理论和群体理论的不同主题,因此我们包括大量背景材料。
The discreteness problem for finitely generated subgroups of $PSL(2,\mathbb{R})$ and $PSL(2,\mathbb{C})$ is a long-standing open problem. In this paper we consider whether or not this problem is decidable by an algorithm. Our main result is that the answer depends upon what model of computation is chosen. Since our discussion involves the disparate topics of computability theory and group theory, we include substantial background material.