论文标题

椭圆曲线的发电机$ e _ {(p,q)}:y^2 = x^3 -p^2x + q^2 $

Generators for the elliptic curve $E_{(p,q)} : y^2 = x^3 - p^2x + q^2$

论文作者

Khazali, M., Daghigh, H., Alidadi, A.

论文摘要

令$ \ {较早的工作表明,椭圆曲线$ e _ {(p,q)} $在所有$ p,q> 5 $和两个独立点上至少排名两个。本文表明,在条件下,可以将两点扩展到$ e _ {(p,q)} $的基础上,这有信心我们将完全恢复。

Let $\{E_{(p,q)}\}$ be a family of elliptic curves over a rational field such that we have $E_{(p,q)} : y^2 = x^3 - p^2x + q^2$, where $p$ and $q$ are prime numbers greater than five. Earlier work showed that the elliptic curve $E_{(p,q)}$ had ranked at least two for all $p, q > 5$ and two independent points. This paper shows that two points that can be extended to a basis for $E_{(p,q)}$ under conditions are confident that we will fully recover.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源